
RBE549 Project3 SfM and NeRF
Haoying Zhou

Department of Robotics Engineering
Worcester Polytechnic Institute

Worcester, MA, 01609
Email: hzhou6@wpi.edu

Zhentian Qian
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, MA, 01609
Email: zqian@wpi.edu

I. PHASE 1: TRADITIONAL APPROACH

TABLE I: Average reprojection Error in pixels. Since the
structure from the motion pipeline takes one image at an
image. For frame ID 2, the average reprojection is calculated
for frames 1 and 2. For frame ID 3, the average reprojection
is calculated for frames 1, 2 and 3, so on and so forth.

Stage Frame ID
2 3 4 5

Epipolar 0.48 0.80 1.05 1.73
Linear Triangulation 4.30 0.54 0.71 1.17

Non-linear Triangulation 4.30 0.54 0.70 1.15
Linear PnP 4.80 7.32 2.95

Non-linear PnP 1.07 1.67 1.21
Before BA 4.30 0.30 0.39 0.28
After BA 0.22 0.23 0.26 0.27

A. Estimating Fundamental Matrix

For the error term in Algorithm 1: Get Inliers RANSAC [1],
instead of using the residual:

xT
2jFx1j (1)

which do not take the scale of the fundamental matrix into
consideration, we use the distance of the feature point to the
epiline as the error metric. The distance of feature point 1 to
the epiline is:

xT
2jFx1j

∥xT
2jF∥

(2)

The distance of feature point 2 to the epiline is:

xT
2jFx1j

∥Fx1j∥
(3)

The largest of the two distances is considered the error. For the
consensus set returned by the RANSAC algorithm, we would
estimate the fundamental matrix using all correspondences in
the consensus set for improvement. This fundamental matrix
is further refined by running a non-linear optimization mini-
mizing the error term discussed above.

The estimated fundamental matrix are visualized by its
epilnes in Fig. 1. We can see that corresponding feature points
lie on the computed epilines, indicating an accurate result.
The average error for the first two frames is 0.48 pixels, as
summarized in Table I. However, when looking at the epipoles,

we can see that they both reside on the right side of the image.
Their positions are contradictory since if camera 1 is on the left
side of camera 2, camera 2 must be on the right side of camera
1. This behavior could be caused by the points being largely
planar and the translation between camera frames with respect
to feature points’ depth being small, causing the fundamental
matrix estimation to be inherently non-robust. Nevertheless,
we do not observe any detrimental performance caused by
this behavior.

We would also like to point out that the estimation of the
fundamental matrix is only necessary for the first two frames.
For the rest of the frames, the fundamental matrix can be
directly computed so long as we know the frames’ pose, which
is determined by PnP. Suppose [Ri | ti] would transform world
points into frame i, [Rj | tj ] would transform world points into
frame j. The transformation that would transform points from
frame i into frame j is then:

Rj
i = RjR

T
i (4)

tji = tj −Rj
i ti (5)

The essential matrix is then:

E = [tji ]×Rj
i (6)

Finally, the fundamental matrix can be calculated as:

F = K−TEK−1 (7)

We can see from Table I that the fundamental matrix calculated
in this fashion has a slightly larger error (for frame IDs 3-5).
However, it is still good enough to establish correspondence
and reject outliers. On the other hand, it is more effective than
running the RANSAC algorithm for every possible image pair.

B. Estimate Essential Matrix from Fundamental Matrix

Given the fundamental matrix, the essential matrix E can
be estimated as:

E = KTFK (8)

C. Estimate Camera Pose from Essential Matrix

Let E = UDTT and W =

0 −1 0
1 0 0
0 0 1

. The four pose

configurations can be computed from E matrix as:
1) C1 = U(:, 3) and R1 = UWV T

2) C2 = −U(:, 3) and R2 = UWV T

mailto:hzhou6@wpi.edu
mailto:zqian@wpi.edu


Fig. 1: Fundamental matrix represented by epilines in frame
1 and 2.)

Fig. 2: Feature matching after RANSAC. (Green: Selected
correspondences; Red: Rejected correspondences)

3) C3 = U(:, 3) and R3 = UWTV T

4) C4 = −U(:, 3) and R4 = UWTV T

If for any configuration, det(Ri) = −1, the camera pose
must be corrected, i.e., Ci = −Ci and Ri = −Ri.

D. Check for Cheirality Condition using Triangulation

1) Linear triangulation [2]: In each image we have a
measurement x = PX, x′ = P ′X, and these equations can be
combined into a form AX = 0, which is an equation linear
in X.

First, the homogeneous scale factor is eliminated by a cross-
product to give three equations for each image point, of which
two are linearly independent. For example for the first image,
x× (PX) = 0 and writing this out gives:

x(p3TX)− (p1TX) = 0 (9)

y(p3TX)− (p2TX) = 0 (10)

x(p2TX)− y(p1TX) = 0 (11)

where piT are the rows of P . These equations are linear in
the components of X. An equation of the form AX = 0 can

then be composed, with

A =


xp3T − p1T

yp3T − p2T

x′p
′3T − p

′1T

y′p
′3T − p

′2T

 (12)

where two equations have been included from each image,
giving a total of four equations in four homogeneous un-
knowns. This is a redundant set of equations since the solution
is determined only up to scale. Similar to how we estimate the
fundamental and homography matrix, the solution is the unit
singular vector corresponding to the smallest singular value of
A.

The initial triangulation plot showing all four possible
camera poses is visualized in Fig. 3. The camera configura-
tion produces the maximum number of points satisfying the
cheirality condition and with a depth smaller than 50 is chosen
as the best camera pose. In this case, solution 1 is selected.

Fig. 3: Initial triangulation plot with disambiguity, showing all
four possible camera poses.)

2) Non-Linear Triangulation: The linear and non-linear
triangulated points are visualized in Fig. 4. Their re-projections
are visualized in Fig. 5. The results suggest that the two
results are very close, the accuracy improved by non-linear
optimization is marginal. Because of accurate camera pose
estimation and correct point correspondences, even with linear
triangulation, the results are already satisfactory. This claim is
backed by the reprojection error in Table I, the error reduced
by non-linear triangulation is smaller than 0.02 pixels.



Fig. 4: Comparison between non-linear vs linear triangulation.

(a) line reproj vis, frame 1 (b) line reproj vis, frame 2

(c) nonline reproj vis, frame 1 (d) nonlin reproj vis, frame 2

Fig. 5: Comparison of projections between non-linear vs
linear triangulation. First column corresponds to first image
and second column corresponds to second image. Top row
shows output of linear triangulation and bottom row shows
output of non-linear triangulation. Green dots show the feature
detections and red dots show reprojections.

E. Perspective-n-points

1) Linear Camera Pose Estimation: We use a simple linear
algorithm for determining P given a set of four 2D to 3D
point correspondences, xi ↔ Xi. The transformation is given
by the equation xi = PXi. Note that this is an equation
involving homogeneous vectors; thus the 3-vectors xi and
PXi are not equal, they have the same direction but may
differ in magnitude by a nonzero scale factor. The equation
may be expressed in terms of the vector cross product as:

xi × PXi = 0 (13)

. This form will enable a simple linear solution for P to be
derived.

If the j-th row of the matrix P is denoted by pjT , then we
may write:

PXi =

p1TXi

p2TXi

p3TXi

 (14)

Writing xi = (xi, yi, ωi)
T , the cross product may then be

given explicitly as:

xi × PXi =

yip3TXi − ωip
2TXi

ωip
1TXi − xip

3TXi

xip
2TXi − yip

1TXi

 (15)

Since pjTXi = XT
i p

j for j = 1, . . . , 3, this gives a set of
three equations in the entries of P , which may be written in
the form: 0T −ωiX

T
i yiX

T
i

ωiX
T
i 0T −xiX

T
i

−yiX
T
i xiX

T
i 0T

p1

p2

p3

 = 0 (16)

These equations have the form Aip = 0, where Ai is a 3×12
matrix, and p is a 12-vector made up of the entries of the
matrix P ,

p =

p1

p2

p3

 , P =

p1 p2 p3 p4
p5 p6 p7 p8
p9 p10 p11 p12

 (17)

Each point correspondence gives rise to two independent
equations in the entries of P . Given a set of n such point
correspondences, we obtain a set of equations Ap = 0, where
A is the matrix of equation coefficients built from the matrix
rows Ai contributed from each correspondence, and p is the
vector of unknown entries of P . The non-zero solution p is
the unit singular vector corresponding to the smallest singular
value of A. The procedure for estimating projection matrix P
is summarized in algorithm 1.

Since K is known, we can estimate {R, T}:

k[R, T ] = γ

p1 p2 p3 p4
p5 p6 p7 p8
p9 p10 p11 p12

 (18)

⇒γR = K−1

p1 p2 p3
p5 p6 p7
p9 p10 p11

 (19)

K−1

p1 p2 p3
p5 p6 p7
p9 p10 p11

 = U

d1 0 0
0 d2 0
0 0 d3

 (20)

⇒γ ≈ d1 + d2 + d3
3

⇒ R = UV T (21)

⇒T = K−1[p4 p8 p12]
T /γ (22)

The reproject based on the output of linear PnP is visualized
in Fig. 6. We can see that linear PnP still has large reprojection
errors. According to Table I, error at this stage is the largest of
all. Since the pose of frame 2 is extracted from the Essential
frame matrix, PnP is not required for this frame, hence the
missing entry in Table I.



Algorithm 1: linear camera pose estimation for P
Objective: Given n ≥ 6 2D to 3D point

correspondences xi ↔ Xi, determine the
projection matrix P such that x′

i = PXi.
Writing xi = (xi, yi, ωi). For each correspondence
xi ↔ Xi compute the matrix

Ai =

[
0T −ωiX

T
i yiX

T
i

ωiX
T
i 0T −xiX

T
i

]
;

Assemble the n 2× 12 matrices Ai into a single
2n× 12 matrix A;

Obtain the SVD of A. The unit singular vector
corresponding to the smallest singular value is the
solution p. Specifically, if A = UDV T with D
diagonal with positive diagonal entries, arranged in
descending order down the diagonal, then p is the
last column of V ;

The matrix P is determined from p as

P =

p1 p2 p3 p4
p5 p6 p7 p8
p9 p10 p11 p12

 ;

2) PnP RANSAC: To remove incorrect matches, The per-
spective transformation and the corresponding camera pose
are computed using Random Sample Concensus algorithm
described in algorithm 2.

Algorithm 2: RANSAC

while iterations < Nmax do
Select six images pairs (at random), xi from image

, X′
i from 3D points;

Compute perspective transformation P between the
previously picked point pairs;

Extract camera pose [R | T ] according to (21)-(22);
Reconstruct perspective transformation as
P = K[R | T ];

Compute inliers where SSD(xi, PXi) < τ , where
τ is some user chosen threshold and SSD is sum
of square difference function;

increment iterations;
end
Keep largest set of inliers;
Re-compute least-squares P̂ estimate on all of the

inliers;
Extract camera pose [R | T ] according to (21)-(22).

(a) line reproj vis, frame 3 (b) line reproj vis, frame 4

(c) nonline reproj vis, frame 3 (d) nonline reproj vis, frame 4

Fig. 6: Comparison of projections between non-linear vs linear
PnP. The first column corresponds to the third frame and the
second column corresponds to the fourth frame. The top row
shows the output of linear PnP and the bottom row shows
the output of non-linear PnP. Green dots show the feature
detections and red dots show reprojections.

3) Nonlinear PnP: To obtain more accurate results by
minimizing the projection error, we run the nonlinear PnP
algorithm. The reprojection error is largely reduced by this
step, as shown in the bottom row of Figure 6. Same conclusion
may be drawn by looking at the reprojection errors of linear
and nonlinear PnP in Table I.

F. Bundle Adjustment

1) Visibility Matrix: Since we are using the large-scale BA
in scipy, the visibility matrix is used to construct the sparse
structure of the jacobian matrix for speed up, as visualized in
Figure 7. For visualization, the jacobian matrix is transposed.
Each column indicates a reprojection error term, each row
indicates a parameter. If one parameter has an effect on a
reprojection error, the corresponding jacobian matrix entry
would be one, otherwise zero. The first few rows correspond
to the camera poses, if the reprojection error is taken on
that camera frame, the entry would be one. The remaining
rows correspond to the coordinates of the 3D points, if the
reprojection error is computed for a particular 3D point, the
corresponding entry would be 1.

2) Bundle Adjustment: The reprojection error before and
after BA for the first two frames are visualized in Figure 8.
The reprojection of the 3D points after BA is visualized in
Figure 9. We can see that after BA, the reprojection error is
largely reduced. The qualitative analysis summarized in Table I
also endorses this claim.



Fig. 7: The transposition of the constructed sparse jacobian
matrix.

(a) Reprojection errors before BA (b) Reprojection errors after BA

Fig. 8: Reprojection errors on frames 1 and 2 before and after
BA.

(a) frame 1 (b) frame 2

Fig. 9: Projections after BA. The first column corresponds
to the first frame and the second column corresponds to the
second frame. Green dots show the feature detections and red
dots show reprojections.

The final reconstructed scene after Sparse Bundle Adjust-
ment (SBA) is visualized Figure 10. We can see that as a
new image frame comes in, new 3D map points are spawned
and the average reprojection error increases. However, after
performing bundle adjustments, the reprojection error is again
minimized. Same observations can be made by looking at
reprojection errors before and after BA in Table I. As we
collect more and more observations, we can also see that
the shape of the building and the street begins to emerge in
Figure 10.

Compare our results to against VSfM [3, 4] output in
Figure 11, we can see that the results are similar.

(a) for images 1 to 2 (b) for images 1 to 3

(c) for images 1 to 4 (d) for images 1 to 5.

Fig. 10: The final reconstructed scene after Sparse Bundle
Adjustment (SBA).

(a) (b)

Fig. 11: Outputs from Visual SfM. Left to right: top view, and
dense reconstruction.

II. PHASE 2: DEEP LEARNING APPROACH

For this section, the network archetecture and the overall
algorithm is following the paper [5, 6]. And the corresponding
code take some GitHub repositories [6, 7, 8] as reference. The
data is obtained from the course subject [1].

A. Network Parameters

The network architecture is shown in Figure 12.
Corresponding parameter is shown in Table II:



Fig. 12: NeRF Network Architecture

Parameter Name Value
Training Iterations 200,000

Neural Network Layer 8
Neural Network Neuron 128

position encoding function number 10
direction encoding function number 4

TABLE II: NeRF Parameters

For the loss function, we use mean square error(MSE)[9]
as the loss function. Also, we introduce Peak signal-to-noise
ratio(PSNR)[10] as the accuracy metric for the evaluation.

For the optimizer, we use Adam [11] optimizer with learn-
ing rate 0.005.

As stated in the given paper and GitHub repository [5, 6],
we will use two identical models for coarse image and fine
image training.

B. Result

The training loss is shown in Figure 13:

Fig. 13: Train Loss

The training PSNR[10] is shown in Figure 14:

Fig. 14: Train Peak Signal-to-Noise Ratio

The validation PSNR[10] is shown in Figure 15:

Fig. 15: Validation Peak Signal-to-Noise Ratio

Furthermore, we select one random image shown in Fig-
ure 16 from the validation set as the ground truth:

Fig. 16: Example: Ground Truth

And the coarse and fine output from the neural network is
shown in Figure 17:

(a) coarse output (b) fine output

Fig. 17: Example: Output for NeRF

As shown in Figure 18, it is one of the frames which can
construct a gif:



Fig. 18: Novel View of the GIF

C. Discussion

The NeRF network training and evaluation take the compu-
tational power heavily. It takes at least 2 hours to finish the
training and 20 min for evaluation.

Except for the computation time consuming, another major
challenge is the differences of functions between Pytorch and
Numpy or Math.

For example, torch.meshgrid(· · ·) and
numpy.meshgrid(· · ·, index=’xy’) has some
difference on the generated meshgrid sequence order.
Therefore, the solution is that we have to reconstruct a
meshgrid function by ourselves. There are multiple functions
with similar problems stated above. In addition, since
torch.searchsorted() has difference performance
compared to numpy.searchsorted(), we have to use
a custom package [12] for searching pytorch tensors in
sequence.

Moreover, another potential issue is about
model.train() and model.eval() in Pytorch.
We should enable those two functions for coarse model only
when training. Otherwise, the fine model cannot have the
expected results. But for the evaluation, we should enable the
functions for both coarse and find models.

Furthermore, if we don’t use the camera poses as input, then
coarse model will have blank output and fine model will have
the coarse output.

REFERENCES

[1] Nitin J. Sanket and Lening Li. P3 Guidence. URL: https:
//rbe549.github.io/fall2022/proj/p3/.

[2] Richard Hartley and Andrew Zisserman. Multiple view
geometry in computer vision. Cambridge university
press, 2003.

[3] Changchang Wu et al. “Multicore bundle adjustment”.
In: CVPR 2011. IEEE. 2011, pp. 3057–3064.

[4] Changchang Wu. “Towards linear-time incremental
structure from motion”. In: 2013 International Confer-
ence on 3D Vision-3DV 2013. IEEE. 2013, pp. 127–134.

[5] Ben Mildenhall et al. “Nerf: Representing scenes as
neural radiance fields for view synthesis”. In: Commu-
nications of the ACM 65.1 (2021), pp. 99–106.

[6] Ben Mildenhall et al. NeRF Repository. URL: https://
github.com/bmild/nerf.

[7] Lin Yenchen et al. NeRF Repository. URL: https : / /
github.com/yenchenlin/nerf-pytorch.

[8] Krishna Murthy and Mikhail Grankin. NeRF Reposi-
tory. URL: https://github.com/krrish94/nerf-pytorch.

[9] Mark D Schluchter. “Mean square error”. In: Encyclo-
pedia of Biostatistics 5 (2005).

[10] Alain Hore and Djemel Ziou. “Image quality metrics:
PSNR vs. SSIM”. In: 2010 20th international confer-
ence on pattern recognition. IEEE. 2010, pp. 2366–
2369.

[11] Diederik P Kingma and Jimmy Ba. “Adam: A
method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014).

[12] Antonie Liutkus and Krishna Murthy. Custom Pytorch
Function Package. URL: https : / /github.com/aliutkus /
torchsearchsorted.

https://rbe549.github.io/fall2022/proj/p3/
https://rbe549.github.io/fall2022/proj/p3/
https://github.com/bmild/nerf
https://github.com/bmild/nerf
https://github.com/yenchenlin/nerf-pytorch
https://github.com/yenchenlin/nerf-pytorch
https://github.com/krrish94/nerf-pytorch
https://github.com/aliutkus/torchsearchsorted
https://github.com/aliutkus/torchsearchsorted

	Phase 1: Traditional Approach
	Estimating Fundamental Matrix
	Estimate Essential Matrix from Fundamental Matrix
	Estimate Camera Pose from Essential Matrix
	Check for Cheirality Condition using Triangulation
	Linear triangulation hartley2003multiple
	Non-Linear Triangulation

	Perspective-n-points
	Linear Camera Pose Estimation
	PnP RANSAC
	Nonlinear PnP

	Bundle Adjustment
	Visibility Matrix
	Bundle Adjustment


	Phase 2: Deep Learning approach
	Network Parameters
	Result
	Discussion


