
SfM and NeRF
Shounak Naik

Robotics Engineering Department,
Worcester Polytechnic Institute,

Worcester, MA, USA.
ssnaik@wpi.edu

Venkatesh Mullur
Robotics Engineering Department,

Worcester Polytechnic Institute,
Worcester, MA, USA.

vmullur@wpi.edu

I. INTRODUCTION

In this project, we estimate 3D reconstruction and simulta-
neously obtain the camera poses of a monocular camera when
given 6 image sequences. Basically, we are given images cap-
tured after the effect of motion and then the goal of this project
is to find the depth of each pair of images and reconstruct of
a full 3D scene. This is usually called Structure from Motion,
and mainly referred to as SLAM in the robotics domain; we
also implement the state-of-art paper ”NeRF: Representing
Scenes as Neural Radiance Fields for View Synthesis”. This is
a deep learning part where we estimate a full 3D view given
a dataset of images of the scene from different perspectives.
A novel view is reconstructed with an MLP neural network
with the help of classical volume rendering techniques and
positional encoding.

II. SFM
The main parts that are done in SfM are given below:
1) Reading the matching.txt files and accessing the feature

matches that are previously given. We can also use SIFT
features instead of these matches by using harris corners.

2) Outlier rejection using RANSAC
3) Estimating Fundamental Matrix
4) Estimating Essential matrix
5) Estimating camera poses from essential matrix
6) Checking chirality condition from triangulation
7) PnP
8) Bundle Adjustment

A. Dataset

The data given to us are a set of 5 images of Unity
Hall at WPI, using a Samsung S22 Ultra’s primary camera
at f/1.8 aperture, ISO 50, and 1/500 sec shutter speed. The
camera is calibrated after resizing using a Radial-Tangential
model with 2 radial parameters and 1 tangential parameter
using MATLAB R2022a’s Camera Calibrator Application. The
images provided are already distortion-corrected and resized
to 800×600 px. Since Structure from Motion relies heavily on
good features and their matching, keypoint matching (SIFT
keypoints and descriptors are used for high robustness) data is
also provided in the same folder for pairs of images. The folder
contained 5 text files named matchingX.txt. In each file, the
matching feature from the Xth image and every other image
was mentioned in the following format. Each row was a new

feature and every row contains for example:
Matching1.txt
2 255 255 255 5.08304 116.978 3 49.0748 166.783
3 79 71 51 7.15528 197.921 2 11.255 225.237 5 259.685
103.719
Here, the first element is the number of matches. The next
three are the RGB values of the match, the next two are
the x and y coordinates of the match in the Xth image.
The next element shows that the match in the Xth image is
corresponding to a match in this (Yth) image. And the next
two elements shows the x and y coordinates of the Yth image.
For example, the second row tells us that there are 3 matches
overall. The next 3 elements (79, 71, 51) are the RGB values of
the same. The next 2 elements (7.15528, 197.921) are the pixel
coordinates of that match in the 1st image. The next element
(2) tells us that this match is present in the second image and
its pixel coordinates are (11.255, 225.237). It also tells us that
this match is present in the 5th image and its pixel coordinates
are (259.685, 103.719). In the code, FindMatches() function
does this job.

B. Estimating Fundamental Matrix and Outlier Rejection us-
ing RANSAC

Now that we have accessed the SIFT features in images, we
basically know the image coordinates. Now using these image
coordinates we can find the Fundamental Matrix using outlier
rejection using RANSAC. Assuming A is the coordinates of
the matches in the first image and B is the coordinates of the
matches of the second image. The fundamental matrix can be
calculated using the following.

[A.transpose][Fundamental −Matrix][B] = 0

Basically, the calculation of the fundamental matrix can be
written as:

[
xA′ yA′ 1

]
∗

f11 f12 f13
f21 f22 f23
f31 f32 f33

 ∗

xByB
1

 = 0

Before using the coordinates of SIFT Feature matches of
the two images for calculating the fundamental matrix, we
first need to normalize them as follows.



Fig. 1. 8-point algorithm of finding fundamental matrix

1) Compute the centroid of all corresponding points in a
single image.

udash =
1

n

n∑
i=1

ui

vdash =
1

n

n∑
i=1

vi

2) Recenter by subtracting the mean u and v coordinates
from the original point correspondences to obtain.

3) Define the scale term s and s’ to be the average distances
of the centered points from the origin in both the left
and right images.

4) Construct the transformation matrices Ta and Tb.
5) Compute the normalized correspondences.
6) Solve for the fundamental matrix F by applying the

eight-point algorithm on the normalized set of point
correspondences computed in the previous step.

7) After obtaining the normalized fundamental matrix
Fnorm, retrieve the fundamental matrix in the original
coordinate frame using the following formula.

Foriginal = TT
b ∗ Fnormalized ∗ Ta

Basically, to calculate the Fundamental matrix, we need
8 points, using RANSAC we will find the best fundamental
matrix and reject the outliers.

• We first select any 8 random matches and calculate the
fundamental matrix.

• Using this fundamental matrix, we calculate the error.
• If the error is less than the threshold value, the points are

considered inliers.
• The fundamental matrix with a maximum number of

inliers is selected as the final Fundamental Matrix as
shown in fig 2.

• This is done for all the matches until the number of
iterations is completed.

To calculate the F matrix from fig.1, we need to find the
SVD of the first matrix and find the column corresponding to
the least singular value from the right singular matrix.
After this is done, SVD clean-up is done on the F matrix
caused due to the noise in correspondences and so, to enforce
the rank 2 constraint of the S matrix, the last singular value of
the estimated F must be set to zero. If F has a full rank then
it will have an empty null space i.e. it won’t have any point
that is on the entire set of lines. Thus, there wouldn’t be any
epipoles.

Fig. 2. Inliers after doing RANSAC to find Fundamental Matrix.

The best Fundamental Matrix found is given below with
237 inliers.

F =

−2.363945e− 08 −2.983864e− 05 1.259266e− 02
3.255821e− 05 2.512670e− 06 −3.338558e− 02
−1.446742e− 02 3.172725e− 02 1.000000e+ 00


C. Finding Essential Matrix from Fundamental Matrix

The Fundamental Matrix is the algebraic representation of
the epipolar geometry that is defined in the original image
space. But, when we want to estimate the depth in the
real world, the intrinsic and extrinsic of the camera should
be integrated. So, we take into consideration the essential
matrix. This essential matrix obeys the Pinhole model unlike
the fundamental matrix and can be found by the following
equation.

E = KT ∗ F ∗K

where K is the camera calibration or the camera intrinsic
matrix. The essential matrix is basically found by taking the
above-given E matrix and then forcing the diagonal elements
such that the last diagonal element is 0 and the other elements
are 1.

E =

 0.00159927 −0.60735138 0.1215597
0.65869385 0.0471868 −0.73597493
−0.16547409 0.78143014 0.0238111


This essential matrix is decomposed into 4 poses which are

4 rotation matrices and 4 translation vectors. Further, we need
to disambiguate these poses to find the correct pose.

D. Estimating Camera Poses

Since we get 4 camera poses from the essential matrix, we
need to disambiguate the correct one using the depth positivity
constraint. The following 4 camera poses were found from our
essential matrix.

R =

 0.99644881 0.02187593 0.08130937
−0.02606067 0.99837044 0.0507672
−0.08006629 −0.05270589 0.99539514


and

C =
[
0.83552555 0.14311217 0.53048654

]T

R =

 0.99644881 0.02187593 0.08130937
−0.02606067 0.99837044 0.0507672
−0.08006629 −0.05270589 0.99539514





Fig. 3. All 4 camera Poses.

Fig. 4. Calculating Linear Triangulation

and

C =
[
−0.83552555 −0.14311217 −0.53048654

]T

R =

0.31759015 0.20070321 0.92674415
0.25113454 −0.96024619 0.12189625
0.91436751 0.19402442 −0.35536824


and

C =
[
0.83552555 0.14311217 0.53048654

]T

R =

0.31759015 0.20070321 0.92674415
0.25113454 −0.96024619 0.12189625
0.91436751 0.19402442 −0.35536824


and

C =
[
−0.83552555 −0.14311217 −0.53048654

]T
To find the correct camera pose, we need to use the follow-

ing depth positivity constraint or the chierality constraint.

r3(X − C) > 0

E. Linear and Non-Linear triangulation

With the given pairs of rotation matrices and translation
vectors, now we have to generate 3D points. Basically, we
have to triangulate them to construct 3D world points out of
them. This can be done using the projection matrices of every
pose and the image points.

Linear triangulation is calculated using the above-given in
fig 4, where Px is the projection matrix and the x is the image
points. We perform SVD on the yellow highlighted matrix

Fig. 5. Calculating Non-Linear Triangulation

Fig. 6. Linear Triangulation

and find the right singular vector to get the green matrix. It
basically is in the form Ax = B
Linear triangulation takes the 2D points into 3D world points,
but they are some sort of geometric error that is handled by
non-linear triangulation. In non-linear triangulation, the image
points are reprojected, and then the error is optimized, thus
new image points are obtained.
We use the equations in the fig 5 to perform non linear trian-
gulation for every every image where Px is the row in the pro-
jection matrix of that image. We use optimize.leastsquares
from sklearn to reduce the geometric error.

F. Linear PnP and Non-linear PnP

With the camera intrinsic matrix, the 3D world points
obtained from the non-linear triangulation and the image
points of the next view, we can find the common features
which are present and then perform Linear PnP. The 2D points
are normalized by calibration matrix to get the camera poses.

K−1x

We, now can solve the system of equations using 6 2D image
points of the new image and corresponding 3D points to get
a Linear PnP that gives a pose matrix of 3× 4.
Since earlier we removed the normalized 2D points using
the camera calibration matrix when we did K−1x, or else
we would have gotten a projection matrix as the output.

Fig. 7. Non-Linear Triangulation



Fig. 8. Non-Linear Triangulation

Whereas we got a pose matrix where the first three columns
are the orthonormal rotation matrix that may contain errors.
To counter this, we perform svd on it and then multiply the
left and right singular matrix.
The translation vector is defined as the t = −RTC PnP
is prone to error as there are outliers in the given set of
point correspondences and to get rid of this error, we perform
RANSAC which is given in the fig 8

The linear PnP reduces the algebraic error similar to the
triangulation method, still these R and C found in the linrar
PnP is erraneous and has to be optimized more using the
reprojection error; essentially decreasing the geometric errors.
For the same we use the following equation:

min
C,q

∑
i=1,J

(
uj − P jT

1 X̃j

P jT
3 X̃j

)2

+
(
vj − P jT

2 X̃j

P jT
3 Xj

)2

here, Pj is the column of the projection matrix formed by the
R and C in the previous step and the X̃j is the homogeneous
form of the world points. Here, instead of using the rotation
matrix, it is efficient to use a quaternion to optimize the error.
To optimize, we use scipy.optimize.least squares
We observed that our non-linear error is more than the linear
error in certain runtimes.

G. Bundle Adjustment and Visibility Matrix

It is basically refinement of all the camera poses that we
got in the previous step.

min
{Ci,qi}ii=1

,{X}J
j=1

I∑
i=1

J∑
j=1

Vij


u

j −
P

jT
1 X̃

P
jT
3 X̃

2

+

v
j −

P
jT
2 X̃

P
jT
3 X̃

2


here Vij is the Visibility matrix.
Basically, we want to optimize everything again with different
perspectives using bundle adjustments. It is basically simulta-
neously refinement of the 3D coordinates describing the scene,
the relative parameters and the optical characteristics of the

Fig. 9. Bundle Adjustment

camera.
Visibility matrix is a matrix of size of inliers to the number
of images and has a value of 1 if the nth inlier is visible from
the image i or 0 if not visible.
Fig 9 shows an ideal bundle adjustment output which is taken
a 3rd party resource online. For the sake of showing the output,
we have borrowed the snippet for PnP and bundle adjustment.

III. NEURAL RADIANCE FIELDS: NERF

NeRF is a neural rendering method that gives us novel
scenes if we input the model with ground truth poses. The
model optimizes on the input ground truth poses and then can
be used as a function approximator for any input pose given
in the scene. In simpler terms, NeRF is capable of giving a
new view of an object if we give it some input views of the
object.
The input given to the NeRF model is a 5D tensor (spatial
location (x,y,z) and viewing direction (θ and ψ). The output
is the RGB colors and the output density.

A. NeRF dataset

We have used the NumPy file of the Lego bulldozer as our
dataset. This dataset contains 106 images and 106 respective
poses. We have used 100 poses as our training data, 1 for
validation and 5 for testing.

B. Ray Generation

NeRF relies on ray-based calculations. Thus it is imperative
to understand how rays are generated for each pose. We can
find out the camera position and the rotation matrix from the
pose matrix. Based on the pinhole equation, the direction of
the rays for each pixel in the image can be found out with
respect to the camera frame. Using the rotation matrix, we
can then get the ray representation in the world frame. These
calculations are done in the get rays function in our code.

C. Ray Stratification

Ideally, we want to sample each point on the ray but since
this is impossible, we rely on discrete points on the ray. We
generate random points between the two ends of the ray. The
2 ends of the ray are taken arbitrarily. This stratification code
can be found in the get stratified method.



Fig. 10. NeRF Architecture implemented

Fig. 11. Volume Rendering Equation

D. Positional Encoding

This is a crucial part of the NeRF implementation. It is
mentioned in the paper that Neural Networks aren’t good with
high-frequency inputs. To mitigate this, the paper recommends
Positional Encoding in which we modulate our raw input
with sine and cosine frequency bands. The paper recommends
setting the number of frequency bands to be 10 for the spatial
part and 4 for the viewing directions part. We have followed
their recommendation.

E. NeRF model

We have built the exact architecture described in the NeRF
paper. The architecture can be seen in the Figure 10. We take
in the spatial part of the input and pass it through a 8 layered
MLP. On the 4th layer of this MLP, we add the spatial input
again as a form of skip connection. The 9th layer is again a
Linear layer. This 9th layer spits out the 1 dimensional output
density logit with the ReLU activation. For the RGB ouputs,
the 9th layer is concatenated with the viewing directions input.
The 11th layer is the output layer which gives us the RGB by
using a sigmoid activate function. The orange arrow between
the 8th and 9th arrow represents no activation. All the rest of
the activations are ReLU.

F. Volume Rendering

This is the part that converts the output RGB values and the
output density values back into a colour map. This is done by
using the equation given in the figure 11. The σ is the output
density. ∂ is the distance between consecutive points in a ray.
c is the RGB values. This equation basically sums up the RGB
values across views according to the output density.

G. Implementation Details

We trained our NeRF model for 7500 iterations with only 1
pose being inputted per iteration. We have batched the number
of rays given as an input to our model. This is done since the
GPU could not handle all the rays of the image all at once.
Our model took 7 hours to train on the university cluster.

Fig. 12. Left image is the predicted image and the right one is the Ground
truth

Fig. 13. Left image is the predicted image and the right one is the Ground
truth

H. Results

To test the trained NeRF network, we passed 4 test poses
as input. We then compared the ground truth image against
the model’s predicted colour map. The results can be seen in
Figures 12 and 13.

I. Possible Improvements

The results from our model are blurry. We suggest two
ways we could improve our results. 1) Training the NeRF for
significantly more iterations. The original paper trained the
network for 200,000 iterations. 2) Using Hierarchical Volume
Sampling would help improve reconstruct texture in the image.

IV. CONCLUSIONS

The project helped us understand the structure of motion
from epipolar geometry and the state-of-art deep learning
paper NeRF and its research.



REFERENCES

[1] https://arxiv.org/pdf/2003.08934.pdf
[2] https : //en.wikipedia.org/wiki/Structuref rommotion
[3] https://towardsdatascience.com/its-nerf-from-nothing-build-a-vanilla-

nerf-with-pytorch-7846e4c45666
[4] https : //www.cc.gatech.edu/classes/AY 2016/cs4476fall/results/proj3/html/sdai30/index.html
[5] https://github.com/sakshikakde
[6] https://github.com/akathpal


	Introduction
	SfM
	Dataset
	Estimating Fundamental Matrix and Outlier Rejection using RANSAC
	Finding Essential Matrix from Fundamental Matrix
	Estimating Camera Poses
	Linear and Non-Linear triangulation
	Linear PnP and Non-linear PnP
	Bundle Adjustment and Visibility Matrix

	Neural Radiance Fields: NeRF
	NeRF dataset
	Ray Generation
	Ray Stratification
	Positional Encoding
	NeRF model
	Volume Rendering
	Implementation Details
	Results
	Possible Improvements

	Conclusions
	References

