
Project3: Buildings built in minutes - SfM and
NeRF

*Note: 6 late days used

Thabsheer Jafer Machingal
Robotics Engineering

Worcester Polytechnic Institute
Worcester, MA

tmachingal@wpi.edu

Krishna Madhurkar
Robotics Engineering

Worcester Polytechnic Institute
Worcester, MA

ksmadhurkar@wpi.edu

I. INTRODUCTION

In this project, we move past 2D image scenes to work
with a more 3D setting. For this we implement Structure
from Motion (SfM) which is reconstructing a 3D scene and
simultaneously obtaining the camera poses of a monocular
camera with respect to the object of interest that is to be
reconstructed. We create a sparse reconstruction from a set
of images with different view points as though the camera
is in motion. The pipeline to recreate this SfM algorithm
can be condensed to Feature Matching and Outlier rejection
using RANSAC, Estimating Fundamental Matrix, Estimating
Essential Matrix from Fundamental Matrix, Estimate Camera
Pose from Essential Matrix, Check for Cheirality Condition
using Triangulation, Perspective-n-Point and Bundle Adjust-
ment. We go about achieving this using a classical approach.
For the second phase of this project, we implemented Deep
learning based 3D constructional algorithm, which utilizes the
idea of Neural Randiance fields.

II. PHASE 1

For phase 1, the task is to reconstruct a 3D scene and
simultaneously obtain the camera pose of a monocular camera.
This procedure is known as Structure from Motion(SfM).

A. Dataset

We are given a set of five images of Unity Hall at WPI.
The images were captured using Samsung S22 Ultra’s
primary camera at f/1.8 aperture, ISO 50 and 1/500 second
shutter speed. The given images are already calibrated and
Calibration matrix(K) is given.

K =

531.1221 0 407.1925
0 531.5417 313.30871
0 0 1


The feature matching on the images has already been per-
formed and given to us as text files. All the possible matches
between images have been identified and given in four differ-
ent text files.

Fig. 1. Images on which sfm is performed

B. Traditional Method

The tradional method of sfm is performed to construct a 3D
scene from the 2D images. The steps in brief are as follows.

• Feature Matching
• Outlier rejection using RANSAC
• Estimating Fundamental Matrix
• Estimating Essential Matrix from Fundamental matrix
• Estimate Camera Pose from Essential matrix
• check for Cheirality Condition using Triangulation
• Perspective-n-point projections
• Bundle Adjustment
1) Feature Matching: The matching coordinates were given

in the dataset.Since there are are 5 images, there could be 5C2,
10, combinations of matches, four of which is demonstrated
below in the figure.

Fig. 2. Matches between image 1 and image 2

2) Outlier rejection using RANSAC: Outlier points were
rejected using RANSAC and the Fundamental matrix with

Fig. 3. Matches between image 2 and image 3

Fig. 4. Matches between image 3 and image 4

most number of inliers was chosen for the subsequent steps
in the pipeline. A set of eight feature matches from a pair
of images (same as in the above step,feature matching) was
taken and if the value of xT2 FX1 is less than a threshold, then
the match is classified as an inlier or else it is rejected as
an outlier. The Fundamental matrix with maximum number of
inlier is considered as the best and returned for the subsequent
steps. The results from this step is given below.

3) Fundamental Matrix: Fundamental matrix is a 3X3 rank
deficient matrix (rank =2), that relates corresponding set of
points in images from different views. In this step eight
point algorithm is implemented[1] The fundamental matrix,
F obtained is:

Fig. 5. Matches between image 4 and image 5

Fig. 6. Matches between image 1 and image 2 after outlier rejection

Fig. 7. Matches between image 2 and image 3 after outlier rejection

Fig. 8. Matches between image 3 and image 4 after outlier rejection

F =

−0.27744998 −0.22048552 −0.06077586
−0.09416008 −0.06779006 −0.07516563
−0.06073737 −0.17902026 1.


4) Estimate essential matrix from fundamental matrix:

Essential matrix can be used to find relative camera poses
between two images, given that the fundemental matrix is
along epipolar constraints. Essential matrix can be estimated
using the following equation, E = KTFK Here, F is the
fundamental matrix and K is the Calibration matrix. with the
above F and K, we estimated E,

E =

−0.13241201 −0.65843784 −0.4816113
−0.66743431 0.60335075 −0.17287408
−0.47322142 −0.17834297 −0.47100571


C. Estimating Camera pose from Essential matrix

The camera pose consists of 6 DoF including rotation, R-
P-Y and translation in x,y,z directions. The estimated set of
Camera pose cofigurations (Ci, Ri), where i= 1,2,3,4 is given
below.

R1 =

 0.35704605 −0.59717274 0.71826376
−0.58636767 −0.74185514 −0.32530585
0.72711145 −0.30501748 −0.61503924



Fig. 9. Matches between image 4 and image 5 after outlier rejection

R2 =

 0.35704605 −0.59717274 0.71826376
−0.58636767 −0.74185514 −0.32530585
0.72711145 −0.30501748 −0.61503924


R3 =

−0.9870711 0.13205744 0.09083767
0.1378957 0.4107712 0.90125013
0.08170329 0.90212408 −0.42367053


R4 =

−0.9870711 0.13205744 0.09083767
0.1378957 0.4107712 0.90125013
0.08170329 0.90212408 −0.42367053


C1 =

[
0.56300731 0.40076661 −0.72277859

]
C2 =

[
−0.56300731 −0.40076661 0.72277859

]
C3 =

[
0.56300731 0.40076661 −0.72277859

]
C4 =

[
−0.56300731 −0.40076661 0.72277859

]
1) Triangulation check for Cheirality condition: The task is

to refine the R and C (camera pose configurations) using linear
triangulation using linear least squares. Given two camera
poses, let’s say, (C1, R1) and (C2, R2) and correspondence
x1 and x2, we find linearly triangulated points in 3D X1
and X2 for all the correspondence of given two images.
Cheirality condition, is that the reconstructed point must
be in front of the camera. If triangulated point,X satisfies
the condition R[3,:]X-C ¿ 0, then the point is infront ogf
the camera. Remember that X is in 2D (x,y,1). This step
return (C,R,X) configuration that produces maximum number
of points satisfying cheirality condition.

Fig. 10. 2D scatter plot of linearly triangulated points

2) Non-Linear Triangulation: Now that we have linearly
triangulated points, we can find 3D points of the same, which
minimizes the reprojection error.

3) Perspective-n-Points: With the estimated 3D points in
the world coordinates and their 2D projections in the image
and intrinsic parameters, we can find 6 DoF camera pose using
linear least squares. This problem is known as PnP. The steps
until now was performed on image 1 and image 2. From this
point we perform the tasks on the next three images. Pnp
algorithm require atleast three correspondence.

4) PnP RANSAC: The RANSAC algorithm is performed
again to remove outliers in the reslut of PnP From linear
PnP, we obtain the camera pose and find the perspective

Fig. 11. 3D scatter plot of points after non-linear triangulation for image
pairs 1 and 2

Fig. 12. 3D scatter plot of points after non-linear triangulation for image
pairs 2 and 3

projection,P, which is used to find the reprojection error. We
reject outlier points that has reprojection error greater than a
threshold(epsilon).
Reprojection Error

error = (u− PT
1 Xest

PT
3 Xest

)2 + (v − PT
2 Xest

PT
3 Xest

)2 (1)

if error is less that ϵ, the configuration is an inlier else an
outlier.

Fig. 13. 3D scatter plot of points after non-linear triangulation for image
pairs 3 and 4

Fig. 14. 3D scatter plot of points after non-linear triangulation for image
pairs 4 and 5

5) Non Linear PnP: We now refine the camera pose found
using linear PnP. We do that by minimizing the reprojection
error found in the above step for each Camera poses.

minC,R(error) (2)

We find the initial guess of the solution (C0, R0) (from Linear
PnP), which is then used to minimize the reprojection error.,
this is implemented using the optimize.leastsq of scipy.

D. Bundle Adjustment

Now that we have Camera poses and points in 3D with
respect to world coordinates, we refine the poses and 3D Points
together. The bundle adjustment refines the camera poses and
3D points simulataneously by minimizing the reprojection
error(equation 1) over R,R,X for all camera poses and 3D
points.
Visibility matrix
Visibility matrix, Vij is a binary matrix (with elements 0 and
1), which tells us if jth point is visible from ith camera. Given
the visibility matrix and reprojection error(equation 1), the
optimization problem is as follows.

minC,R,X

I∑
i=1

J∑
j=1

Vij(error) (3)

This minimization problem is solved using optimize.leastsq of
scipy. The output form Bundle Adjustment function is the new
camera poses R,C, and 3D points X. Using these results we
can render the 3D view of the given images.

III. PHASE 2

For Phase 2 we implemented NeRF: Neural Radiance Fields
for view synthesis from this paper[2].

A. Dataset

The dataset has training, validation and testing images. 100
training images and annotations are given, which contains the
focal length of the camera while the image being captured and
poses of each image.

B. Pipeline

The input to the network is a 5D coordinates (spatial loca-
tion (x,y,z) and viewing direction θ, ψ). This 5D coordinates
are sampled along the ray for each pixels. The view direction
are encoded for obtaining high frequency inputs. This has
helped the network to learn better.The number of chnnels
to the input netwrok is 3+3x2xf , where f is the number of
positional encoding function.

1) Positional Encoding: We used a log scale(base = 2)
alternating sine and cosine functions as the encoder. This
function encodes the view directions and add the encoded
channels to the input to the network. If the number of encoding
function is f, then the number of inputs is 3 directions(x,y,z)
and 2 view directions(θ, ψ) with 3 channels times f.

2) Neural network: A multi-layer perceptron (MLP) is
used as the approximator function. There are multiple ways
in which we can define our network. The model used is
demonstrated in figure 1. The network we used has 5 layers
and and 256 hidden layers with few changes from what is
described in the original implementation. The changes to the
network was made to better utilize the available computation
resources and optimized for better results. We have tested
for quite a few variants of the network and observed the
changes in performance with respect to features like number
of parameters and number of layers. The network has 5 layers

Fig. 15. flowchart of the neural network

and sigma value, which is the density is taken from the output
of the third layer. And the RGB values are rendered fronm the
output of the final layer. A flow chart of the network is given
below(figure 15).

C. Stratified sampling

Each pixels project a ray and in this step, we sampled
the ray between the nearest and farthest point. A number of
samples is defined, which determine the number of points to
be samples on the ray. Stratified sampling method samples the
points randomly[3].

1) Volume rendering: Volumetric rendering is a classical
rendering method where the idea is that intensity at a pixel is
the collective dum of intensities at each sample posiions, this
is done channel wise and the out put is rendered as a single
RGB image.

2) Training and hyper-parameters used: We have tried and
learned different parameters that works well for this particular
network. IN the end the following hyperparameters gave the
optimal results.
Learning rate = 0.002
Number of iterations = 100,000
The training time was around 10 hours with one Gpu, Nvidia
GeForce RTX 3090 Ti, 24GB of vram
The network parameters was divided to speed up the training
process. With the above model, parameters and configuration,
GPU was optimized to run at 100% memory. The results from
the network was observed at an interval of 1000 iterations and
recorded on a single test image, which was tested on an image
from validation set.

D. Results

The output from the NeRF algorithm (Figure 17) for the test
set is recorded and converted to GIF of the collection and is
presented with this document. The output we obtained in this

project is of comparable standards to the current and original
implementation of NeRF.

Fig. 16. Original test image

Fig. 17. output image from NeRF

REFERENCES

[1] “Eight-point algorithm,” Wikipedia. Apr. 10,
2022. Accessed: Nov. 12, 2022. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=Eight-
pointalgorithmoldid = 1081924376

[2] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “NeRF: representing scenes as neural radiance fields for view
synthesis,” Commun. ACM, vol. 65, no. 1, pp. 99–106, Jan. 2022, doi:
10.1145/3503250.

[3] [1] “Stratified sampling,” Wikipedia. Nov. 06, 2022.
Accessed: Nov. 12, 2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Stratifiedsamplingoldid =
1120420596

