
Project 4: Buildings Built in Minutes
SfM and NeRF

RBE549
(Using 7 late days)

Karter Krueger
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, MA 01609

Email: kkrueger2@wpi.edu

Tript Sharma
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, MA, 01609

Email: tsharma@wpi.edu

I. PHASE 1: STRUCTURE FROM MOTION

The first phase of the project was implementing the classic
Structure from Motion (SfM) pipeline. SfM is the Computer
Vision equivalent to SLAM in Robotics, which is widely used
across nearly every robot. The purpose of SfM is typically
more focused on photogrammetry applications rather than
localization and mapping. The classic SfM pipeline takes in
images from several unknown perspectives, detects points,
matches them, and uses them to reconstruct 3D features of
the scene, as seen in the following steps.

1) Data Parsing (of features and matches)
2) Fundamental Matrix Estimation
3) RANSAC for Fundamental Matrix
4) Essential Matrix Estimation
5) Camera Pose Estimation
6) Triangulation

a) Linear Triangulation
b) Disambiguate Camera Pose
c) Non-linear Triangulation

7) PnP (Perspective-n-Point)
a) Linear PnP
b) PnP RANSAC
c) Non-linear PnP

8) Bundle Adjustment
a) Build Visibility Matrix
b) Perform bundle Adjustment

A. Dataset and Parsing

In this project, we will reconstruct the scene of Unity Hall, a
robotics building at WPI. To ensure consistent results, features
points were previously extracted and matched using SIFT, and
were provided in file-format for each image. The files were
read using the defined format, which consists of the matches
for each image, in list form, with the (u,v) coordinates of the
matches from image 1 and then images 2-5 (for example).

B. Fundamental Matrix Estimation

Fundamental Matrix is used to define relationship between
a pair of images from two different viewpoints. It incorporates
epipolar geometry to describe this relationship. We can obtain
point-to-point correspondences from the parsed dataset. Since
Fundamental Matrix (F) is a 3x3 matrix, we have 9 unknowns.
With the last element being the normalizing factor, we are left
with 8 unknown values. Hence, wew use the 8-point algorithm
to compute the Fundamental matrix. using the constraint:

x2Ti .F.x1
T
i = 0 (1)

Using the equation, we computed A matrix such that A.f = 0,
where f represents the elements of F. This is followed by SVD
cleanup to contrain F matrix to a rank 2 matrix.

C. RANSAC for Fundamental Matrix

Since, there are noises incorporated because of wrong fea-
ture correspondences from SIFT feature matching. We remove
outliers by using equation 1 a modification that the value
should be less than a given threshold ϵ. After obtaining the
best set of inliers, we compute F matrix again with this bbest
set of inliers.

Using the Funamental Matrix RANSAC method, we cut
the outliers out of the scene, as seen below in the original
image and inlier matches image. You can see it cuts down the
outliers significantly, plus we now have the F matrix we need
for everything else. We also show results on another building
dataset.

D. Essential Matrix Estimation

Using the Fundamental Matrix (F) and camera intrinsic
matrix (K), we can estimate the Essential matrix using the
formula E = KT ∗ F ∗ K. After calculating E, we perform
cleanup using SVD to extract the components. We first use
SVD to get U , D, and V T , then set singular values to
D = diag[1, 1, 0]. Finally, we reconstruct E for the final result,
using E = U ∗D ∗ V T .



Fig. 1. Matches on Unity Hall from Image 1 to 4

Fig. 2. Inliers of matches on Unity Hall from Image 1 to 4

Fig. 3. Inliers of matches on another building image 1 to 4

E. Camera Pose Estimation

Using the computed E matrix we can estimate camera poses
as a combination of rotation and translation as given below:

P = KR[I − C] (2)

which can be used to compute the four combinations of R and
C.

You can see two examples below on camera pose estimation.
First, on Unity Hall, and second on another sample building
dataset.

F. Triangulation

Now that we have relationship between points in real world,
we can use it to identify the 3D world point, X . Since we
have the direction and we need the distance from camera to
the world point, triangulation best suits the job.

1) Linear Triangulation: The world point projection should
be the same as the corresponding point on the image. Using the
camera poses and exploiting the mentioned fact we compute
the world coordinate, X using the following equation: xXP ∗
X . This is used to perform SVD and obtain X . Also, we
considered the first camera to be at the origin to compute the
triangulation

Fig. 4. Unity hall camera pose estimation

Fig. 5. Other building camera pose estimation

2) Camera Pose Disambiguation: We reject wrong camera
poses by using the chirality condition i.e. the coordinate of
the predicted world points must be in front of the camera. The
chirality condition is given as r3(X −C) > 0 where r3 is the
third row of the rotation matrix R, X is the world coordinate
and C is the Camera origin or the translation vector.

3) Non Linear Triangulation: Once we have found the
actual pose of the camera, the next task is to reduce the
error between the reprojected world point and the detected
image point. Since the linear error reduces algebraic er-
ror which is of less significance in the 3D world where
a geometric error makes more sense. We compute the
non linear error and try to converge the reprojected point
and thereby find a more accurate world point. We used
scipy.optimize.least_squares function for this.

We show results of both linear and non-linear triangulation
on the unity and building datasets below. We also show their
projection back onto the image plane for comparison as well.

G. Perspective-n-Point (PnP)

After we have computed the optimized world coordinates
for two camera frames, we estimated the pose of other four



Fig. 6. Unity Hall triangulation

Fig. 7. Other building triangulation

Fig. 8. Unity Hall triangulation projection

cameras using Perspective-n-Points algorithm. We have x, X
and K, the remaining unknowns are R and C in the pin-hole
camera equation. Since the first image had correspondences

Fig. 9. Other building triangulation projection

with all the other images, it was used to compute the camera
poses

1) Linear PnP: We solve a linear least squares equation
involving 12 correspondences or 6 point correspondences to
compute the new camera pose i.e. R and T . This was used to
compute the SVD and extract R and T values from the last
row of V T .

2) PnP RANSAC: PnP is also prone to outliers which can
produce erroneous camera poses. Hence, if the reprojection
error for the new camera is less than a given threshold ϵ∗ the
points were added to the inlier set for a more robust camera
pose estimation.

3) NonLinear PnP: Similar to triangula-
tion, we compute the geometric loss using
scipy.optimize.least_squares to further reduce
the error and get a more accurate camera pose.

Using the nonlinear PnP method, we get the camera pose
for each camera relative to the X points. We display these
below on a plot with triangulated points, for Unity hall and
the other building dataset.

H. Bundle Adjustment

Now that we have all the camera poses and the world
coordinates we can refine the camera poses and the 3D
coordinates together. This is called Bundle Adjustment, which
is an optimizer to refine the positions of both cameras and
points jointly. This is often performed using libraries such as
”GTSAM” and others, but for this project, we will implement
our own using the Scipy LeastSquare method, as described
below.

1) Visibility Matrix: The visibility matrix is constructed
when reading in the data files. When reading the ”matching”
files for each image, we build a matrix of all points (for
example, around 10,000 in Unity Hall files) and mark a 1 for
each camera column if the point is visible from that camera.
This results in a n x m size matrix for n points and m cameras.



Fig. 10. Unity Hall PnP camera poses

Fig. 11. Other building PnP camera poses

2) Bundle Adjustment: Bundle Adjustment uses the Scipy
least square optimizer like many of the former sections. The
purpose of Bundle Adjustment is to take in all the world points
X, pixel coordinates x for the coordinates in each image, the
camera poses (as translation and quaternion representations
of rotation matrix), and a visibility matrix from above. The
visiblity matrix significantly reduces the computational re-
quirements by specifying what jacobians must be computed
behind the scenes and which can be skipped to run faster.

II. PHASE 2: NEURAL RADIANCE FIELD (NERF)

While SfM has long been around as a reliable approach to
reconstruction, there has been recent work in deep learning
that builds on the camera poses from SfM to allow for novel
view synthesis of scenes. The key method that popularized
this new version of novel view synthesis was unveiled in 2020,
with a paper called Neural Radiance Fields, commonly known
as NeRF. This method takes many images of a scene from
known perspectives (translation and rotation of the camera).
Using the known camera positions and intrinsic, we cast rays

out into 3D space using a pin-hole camera model. We train a
deep network to overfit to the scene with a mapping between
3D coordinates and viewing direction, to RGB color and
opacity/density values. To aid the network’s learning, fourier
frequency embeddings of the XYZ coordinates and viewing
direction vector are used.

In this project, we implemented NeRF from scratch by
following along with the methods outlined the paper. We
trained on the classic Lego model synthetic dataset generated
using Blender. The steps for training a NeRF are below.

1) Data Loading
2) Network Creation
3) Frequency Embeddings
4) Ray Generation
5) Rendering
6) Training
7) Results and Improvements

A. Data Loading

We load data from the Blender synthetic dataset format
from a folder of images and a json file of the corresponding
transformation matrix of the camera, which consists of rotation
and translation.

B. Network Creation

NeRF is implemented as an MLP (Multi-Layer Perceptron),
which stands out compared to many recent image neural
networks that use convolutional layers. The MLP in NeRF
is comprised of 8 fully-connected layers of 256 nodes each,
with ReLU activations in between. The input to the first and
5th layers is the positional encoding (described next) of 60
values. After the 8th layer, the network splits off into a sigma
prediction for the density of the point, and then continues
with two more fully-connected layers for prediction the RGB
values. Before the RGB layers, the viewing direction encoding
is concatenated as 24 values to the existing 256 (from the first
8 layers). This branch goes on to one more 256-node layer
and finally a 128-node layer before Sigmoid is applied to the
3 RGB output values. A network diagram is shown below (as
seen in the NeRF paper).

Fig. 12. Diagram of the NeRF MLP network (from the NeRF paper)

C. Frequency Embeddings

In the NeRF paper, they realized that adding frequency
encodings, similar to fourier features, helped the performance
of the network significantly with the fine-resolution features.



We have implemented this in a similar way, that uses sine and
cosine functions, with multipliers that are powers of 2 that
vary from 0 to L-1 features. As specified in the NeRF paper,
it is suggested to use their tuned hyperparameters of L = 10
for XYZ coordinate embeddings and L = 4 for the viewing
direction embeddings. This results in a total of 60 features for
positions (10(L) * 2(functions) * 3(coordintes) = 60), and 24
for viewing directions (4(L) * 2(functions) * 3(values) = 24).
These help the network learn higher frequencies due to the
similarity to the fourier space where values are represented
more in the frequency space. This is compared to a traditional
neural network that typically only learns the lower frequencies
to reduce loss.

D. Ray Generation

Rays for training are generated for every pixel in every
image, where every ray is composed of an origin in XYZ
global space, and a direction vector. Using the pin-hole camera
model, we cast rays from the camera origin through the center
of each pixel on the image plane, based on the focal distance
between the image plane and camera origin. This gives us a
direction vector for each ray as an XYZ vector. We then rotate
the ray direction vectors based on the camera rotation matrix
for the global space.

As part of datasets for NeRF, we also specify the near and
far distances of the scene for each ray, which signal which
section of the ray should be rendered for each ray. In the case
of the Lego dataset, the near and far distances are 2 and 6,
respectively. We re-parameterize the rays into NDC space by
shifting the ray origins to the plane to be ”near” units from
the camera, and we re-scale the ray length so a ray magnitude
of 1 is now equal to the ”far” distane from the camera.

E. Rendering

Rendering of a scene is critical for training and testing of
the NeRF. We first generate 3D points along each ray using an
evenly-spaced distribution of 64 points (for example), along
the ray from 0 to 1 (in NDC space, from near to far in the
scene). Once we have 3D points, we pass them through the
frequency embedder (explained in a previous section) to get
60 values, or 20 encodings per coordinate of the XYZ values.
We also pass the normalized viewing direction vectors of the
rays through a frequency embedder to get 24 values per point,
or 8 per value of the XYZ viewing direction vectors.

With the above frequency embeddings of positions and
viewing directions, we pass these through the nerual network,
which outputs RGB and density values for each input point.
Using the densities for each points, we generate ”weights”
using the rendering equation of: weights = alpha * cumula-
tiveProduct(1 - alpha). This formula is used to give the highest
values and importance to high weights that occur early on
along the ray. This means solid objects closest to the camera
will contribute the most color, and prevent occluded solid
objects from being rendered. This formulation also allows
solid objects behind translucent objects to still be rendered
as they contribute to the weighted sum of RGB values.

In the NeRF paper, the rendering continues after the coarse
points, by generating new ”fine” points along ray that are
distributed mostly around the objects of interest (with high
weights values) rather than the open spaces. This new dis-
tribution of fine points is generated using an inverse CDF
probabilistic formulation (which is also common to other
domains such as particle-filters, as learned in office hours with
professor Sanket). The new fine points are then encoded as
before and passed through the fine network (rather than the
coarse network used the first time). The fine outputs of the
network are then rendered as the alpha-weighted sum of the
RGB values as before. This results in the final rendered pixel
values for each ray. We did not implement the fine network
in our implementation in order to keep it simpler for time
purposes as we learned, but we still spent significant time
learning about how this would be implemented and gave it a
try, but without success in the final rendering results.

F. Training

To train the NeRF, we sample a random photo from the
dataset during each epoch and take a collection of 6500
random rays (the largest that fit in GPU memory) from the
image. The list of rays are then rendered using the above
weighted-sum rendering method. The resulting ray ”pixel”
values are then compared against the original pixel values of
the training data. This difference is used in a Mean-Squared-
Error loss formulation for the network to learn on. We used an
Adam optimizer with a learning rate of 1e−5 to train for up to
200,000 epochs. During the training process, we encountered
a few issues such as the gradients being 0s due to a bug in the
rendering, which we debugged through. In the end, we ended
up also limiting the dataset to smaller resized versions of the
original images and a crop of only the center of the image, to
allow the network to train easier and faster.

G. Results and Improvements

As explained in the training section we trained on a resized
version of the dataset and a crop on the center of the image
to allow for faster and simpler training. The results are shown
below with a comparison to the origin (un-resized, un-cropped)
image from the training dataset. You will notice that only a
yellow blob is shown, which is what was expected for the
resized version of the dataset with only a coarse network in
use (compared to both coarse and fine), and limited training
time of 20,000 epochs for this example. Our rendering method
pass the rays of a target image into the network and filled in
the corresponding pixel values, very similar to the rendering
method used during training.

While these results aren’t pretty like the graphics in the
paper, this still shows that our network was doing many things
right and starting to render the correct color (in yellow blob
form) of the Lego model with some structure starting to appear.
We believe with more time to tweak and train the model,
we would eventually get the same impressive visual results
as the paper, as we continued to discover many of the code
tricks to get there. Regardless of the quality of our result,



we had a phenomenal learning experience as we learned the
math behind volume rendering and how the NeRF network is
formulated with position encodings.

Fig. 13. Original training image for NeRF

Fig. 14. Our simplified, cropped, down-sized, render


