
RBE 549: Project 3 - Building built in Minutes:
SfM and NeRF

Chinmay Kate
M.S. Robotics Engineering

Worcester Polytechnic Institute (WPI)
Worcester, MA 01609
Email: cskate@wpi.edu

Mandeep Singh
M.S. Robotics Engineering

Worcester Polytechnic Institute (WPI)
Worcester, MA 01609

Email: msingh2@wpi.edu

Abstract—In this project we implement computer vision meth-
ods to reconstruct 3D scenes and simultaneously obtain the
camera poses using method called Structure from Motion. It uses
technique which utilizes a series of 2D images and reconstruct the
3D structure of a scene. SfM can produce point cloud based 3-
D Models similar to LiDAR. SfM uses Principle of Stereoscopic
photogrammetry which uses triangulation method to calculate
relative 3-D poses of object from stereo pairs.

Index Terms—3D reconstruction, SfM, NeRF

I. PHASE 1 : CLASSICAL SFM PIPELINE

A. Overview

In the 3D reconstruction of scenes i.e In SfM pipeline
most critical step is feature matching from the common points
in the scene and eliminating the outliers using RANSAC
algorithm. Then comes estimating Fundamental matrix which
relates the corresponding points of two images from different
views and later using this matrix to compute Essential Matrix.
Camera poses are estimated and the right one is selected using
cheirality constraints using Triangulation. We do this for n
Perspectives and finally compute the re projection error and
try to minimize this non-linear re-projection error using bundle
adjustment.

Fig. 1: Overview of SfM pipeline.

B. Dataset

Data been provided is of set of 5 images of Unity Hall.
Fig 2 shows these 5 images taken from Samsung S22 Ultra’s
Main camera at f/1.8 aperture, ISO 50, 1/500 sec shutter speed.
This camera is calibrated using Ran-tan Model with 2 radial
parameters and 1 tangential parameters. So these 5 images are
distortion corrected and resized to 800X600px.

C. Feature MAtching and RANSAC using Fundamental matrix

Good feature remains critical for Computer vision algorithm
to work. Feature descriptor used is SIFT for it’s high robust-
ness in structure of motion problem. This data is provided in

Fig. 2: Images of Unity Hall

’matching.txt’ file for all 5 images. We have 5 images and 4
matching ’.txt’ files. It has nFeatures: (the number of feature
points of the ith image - each following row specifies matches
across images given a feature location in the ith image and
Each Row: (the number of matches for the jth feature) (Red
Value) (Green Value) (Blue Value) (ucurrent image) (vcurrent
image) (image id) (uimage id image) (vimage id image) (image
id) (uimage id image) (vimage id image).

We need to extract these values from the ’.txt’ file and store
in list of feature in x, feature in y, rgb-values, feature-flag map.
These feature flag map contains 0’s and 1’s where if a point
in ith image matches with other images then those image ids
will have 1 rest zeros. These will help in PnP.

As data become noisy after SIFT feature descriptor,
RANSAC is used with fundamental matrix with maximum no
of Inliers. We use normalized 8-points Algorithm to calculate
fundamental matrix. Fig 3 shows to calculate fundamental
matrix. We normalize it as epipolar lines do not exactly pass
through the center of point correspondences. We calculate the
fundamental matrix using these normalized points and after
that we retrieve the original fundamental matrix. Due to Noise
in correspondances F can be full rank i.e 3, but we need to
make it rank 2 by assigning zero to last diagonal element and
thus we get the epipoles.

D. Essential Matrix Calculation

Relative camera Poses needs to be found between two
images and using Fundamental matrix computed above and
K matrix given which has the intrinsic values of camera in it
Essential matrix is computed and is Decomposed using SVD.
It’s diagonal elements are again enforced to 1,1,0 due to this.
This gives us the relative camera poses between two views.
This is in image coordinates which has been normalised earlier
unlike Fundamental matrix which is in pixel co-ordinates.



Fig. 3: Fundamental Matrix calculation

Fig. 4: Feature Matching for 1st 2 images

Fig. 5: Feature Matching of Inliers.

E. Camera Pose Estimation and Cheirality Condition using
Triangulation

Here E matrix is decomposed using SVD and as camera
pose has 6 DOF, 3 Rotational and 3 Translation. C’s and R’s
are calculated using formula stated in Fig. 5. Here C is camera
center and R is Camera Rotation.

We take two camera poses and point correspondence to find
the X (3D-point) in the world using Linear Triangulation. We
do this for all Camera poses to find X (3D point in front of
camera having Z value positive. This is called depth positivity
constraints.

Our task is to calculate unique camera pose out of 4 by
removing the dis-ambiguity. This can be done using cheirality
conditions i.e Reconstructed points should be in front of
Cameras and r3(X-C) ¡ 0, Whereas r3 is third row of Rotational
matrix.

After getting lineared triangulated 3D points, we try to
minimize the re-projection error of the location of 3D points
between actual points and re-projected points. In linear tri-

angulation we minimize algebraic error and in Non-linear
triangulation we try to minimize geometric error which is
also called re-projection error which is more meaningful. So
when we try to minimize the re-projection error we refine the
location of 3D points. We get initial guess from the linear
triangulation. We use function scipy.optimize and use trust
region field as optimization. We write as re-projection error
as given in Fig 6.

Fig. 6: Calculation of Different Camera Poses.

Fig. 7: Calculation of re-projection error.

Fig. 8: Reconstruction of Scene with 2 Camera’s after Cheiral-
ity condition.

F. Linear PnP, RANSAC, Non-Linear PnP.

We proceed with estimating camera poses with respect
to reference alignment for the remaining images and again
compute 3D points. We are given with 2D-3D correspondences
and K matrix, we can again calculate R and C parameters. We
normalize the 2D points with K matrix by performing K−1∗x
and removing interensic effect. We need at least 6 2D-3D
correspondences to solve RT (3X4) matrix using SVD, which
has translation and rotation elements. This has removed K
effect from RT (3X4) matrix after normalization of 2D points.
Here 3 columns of RT matrix has rotational elements which is
orthonormal and due to errors we enforce it by decomposing



SVD and only multiply U and V. Also we find determinant of
new R matrix and if it is -1, we multiply R matrix with -1.
Translation vector is 3rd column of RT matrix.

As PnP produces too many errors we use RANSAC to
eliminate the outliers using the re-projection error as discussed
in above section and Fig. 6.Just like in triangulation, since
we have the linearly estimated camera pose, we can refine
the camera pose that minimizes the re-projection error. We
again refine these location using Non-Linear PnP optimization
using Scipy.optimize also we convert Rotation matrix into
Quaternion as it is good choice to maintain orthogonality
and translation vector when passing for optimization. This
minimization is highly nonlinear because of the divisions and
quaternion parameterization.

G. Bundle Adjustment

Till here we have computed all camera poses and 3D points.
We need to refine these camera poses and 3D points together.
We further want to refine the location points to get maximum
accuracy and optimal values of the 3D points and cameras
poses and so we perform Bundle adjustment. To start with the
Bundle matrix we need to get Visibility matrix which finds the
relationship between camera and point defined by Vij , Here j
is jth point visible in camera i.

For example, consider there are N image points, N3d world
points, nC cameras (since number of image files provided
were 6, maximum nC will be 6), where each camera has 6
extrinsic parameters, (Rotation: roll, pitch, yaw; Translation:
cx,cy,cz). The sparsity matrix Mba has dimensions 2 N ×
(N3d 3 + nC 6). If image point at index 12 in N corresponds
to world point at index 12 in N3d, then the elements of matrix
Mba, that relate them, will be 1.

We can see high level of refining of the location using trust
region reflective algorithm method of least square which is
more robust to sparse problem. We get the refined 3D points
and camera poses. And thus the pipeline is completed with
the refinement. We can compare refinement before and after
bundle adjustment.

H. Results Analysis

There are some observations regarding the refinement before
and after Bundle adjustments and overall pipeline of the
Structure of motion.

• Like it is mentioned in the Feature matching section,
getting good features are always critical for any CV
problem. And thus the bad data can cause lot of problem
and needs to be refined and causes bad matching. It
affects the F matrix calculation.

• Since this algorithm critically relies on optimization, We
see this process of least square to be very slow and
as discussed in class there are really better methods
to implement the non-linear optimization to improve
accuracy and speed.

Fig. 9: The final reconstructed scene after Sparse Bundle
Adjustment (SBA) for images 1 to 5.

II. PHASE 2 : DEEP LEARNING - NERF

A. Introduction

In Deep Learning part, we will be implementing Neural
Radiance Fields (NeRF) to synthesize novel views of complex
scenes by optimizing a continuous volumetric scene function
using a sparse set of input views. The input for NeRF is a
5D continuous array in which first 3 elements represent the
3d coordinates of the spatial location and the last two gives
the direction of the ray formed by joining the particular image
pixel to the camera center. The output of the NeRF is RGB
color (radiance field) of the specific pixel and the volume
density at that spatial location.

B. Model Input

First we will discuss what our dataset is for the model and
how we preprocess it to feed to our neural network to get
the desired output. We have a dataset of images of a lego
structure as seen in Fig. . Along with the images we are also
given camera poses of those images (i.e. camera to world
transformation matrices).

Now, in NeRF’s we are using classic volume rendering
techniques. So, we will treat each image pixel in the image as
a ray in real world and then we will sample points on that ray
to get out input for the model. But first we have to convert
everything to world co-ordinates, then only we can specify the
ray direction and find 3D spatial co-ordinates.

1) Ray Generation: We have to generate rays from each
pixel of the image. A typical formulation of ray looks like
below equation:



Fig. 10: Sample picture of NeRF lego dataset.

where ’o’ is the origin, ’t’ is the sampling parameter and
’d’ is the direction.
In our case our origin for the ray will be the pixel position
of the image. Direction will be a unit vector along the vector
joining the camera center and the particular pixel position.
But currently all are values are in 2d image plane and in pixel
coordinates. So, to get the rays follow the following steps:

• Convert the image pixel coordinates to normalized coor-
dinates with (i.e. wrt to camera center). The COLMAP
frame is (X,-Y,-Z). Also, Z = -1 has been assumed.

• Now, we have ray direction wrt camera frame. If we mul-
tiply this vector by the camera to world transformation
matrix (only rotation part), we will have this ray vector
converted to world frame. and finally, we get the ray
direction unit direction by dividing by the magnitude of
the vector.

• The origin of the ray will be just the translation part of
the camera to world transformation matrix

2) Sample Points: Now, we have both direction and origin
of the ray and we are left to decide only sampling parameter to
generate a ray. For sampling parameter, we are doing uniform
sampling along the ray with some added noise so that the
model is exposed to new data and thus better results could be
obtained.

3) Positional Encoding: To get better results and render
high frequency features we will be using positional encoding.
the below given encoding function has been used in NeRF.
In our function we have 6 terms for encoding. All the input
values are encoded separately before we input it to the network
for training.

C. Network - Multi Layer Perceptron

The input data is passed to our Network which is just a
bunch of fully connected layers and giving us the output as
volume density and RGB value at the particular sample point.
The network architecture can be seen in the Fig. .

Please note that we have used a very small network as
compared to what has been implemented in the paper. Also,
our input to the network are both spatial location and direction
unlike the paper where direction input is given later while
training only for the RGB values.

D. Volume Rendering

The output from the network is just RGB color value and
volume density at a particular location. So, we use these
predicted values to render the 3D scene. The predictions from
the network are plugged into the classical volume rendering
equation to derive the color of one particular point. the
equation for which looks something like as shown below:

Using volume density, we first calculate the transmittance till

the particular sampling position and then multiply with the



predicted color at that position to get the final color in the
image (radiance field). We repeat this process for all the pixels.

E. Loss Function

Once we get all the color (RGB) values after 3D volume
rendering we can just compute photometric loss between these
predicted color values and actual image values.

F. Network training parameters

Following are the parameters used to train Train NeRF deep
learning model:

• Epochs = 1000
• Mini Batch size = 4096
• Near point = 2
• Far point = 2
• Number of samples on 1 ray = 32
• Learning rate = 5e-3
• Number of terms in encoding function = 6
• Image input size = 100 x 100

G. Results - Train and Test

The loss plot for the network for 1000 epochs has been
plotted as shown below: Also, a sample rendered image can

be seen after 1000 epochs. A sample gif has been attached
with the results made with the predictions on the test set.

H. Conclusion and Problems Faced

In conclusion, the initial results are good. If the model is
trained for more time and epochs the results can be far better.
Also, if hierarchical sampling is used along with a bigger
network, we can obtain better results.
The main problem was training time. If we used full sized
images (800 x800), had used more number of samples along
the ray, we will get sharp results. Also, proper vectorization of
code is very critical to run the code fast and reduce the training
time. This is where we faced difficulty to write vecotorized
code and so took help from various online resources as
mentioned in references.

(a)

Fig. 11: Original image

(a)

Fig. 12: Predicted image

Fig. 13: PnP Linear and Non-Linear Error

Fig. 14: Triangulation Linear and Non-Linear Error.

III. REFERENCES

• https://www.cc.gatech.edu/classes/AY2016/cs4476 fall/
results/proj3/html/sdai30/index.html

https://www.cc.gatech.edu/classes/AY2016/cs4476_fall/results/proj3/html/sdai30/index.html
https://www.cc.gatech.edu/classes/AY2016/cs4476_fall/results/proj3/html/sdai30/index.html


Fig. 15: Bundle Adjustment

• https://www.cis.upenn.edu/∼cis580/Spring2015/Projects/
proj2/proj2.pdf

• https://scipy-cookbook.readthedocs.io/items/bundle
adjustment.html

• https://pyimagesearch.com/2021/11/17/
computer-graphics-and-deep-learning-with-nerf-using-tensorflow-and-keras-part-2/

• https://colab.research.google.com/github/keras-team/
keras-io/blob/master/examples/vision/ipynb/nerf.ipynb#
scrollTo=6HSYxrkAsW-S

• https://colab.research.google.com/drive/
1rO8xo0TemN67d4mTpakrKrLp03b9bgCX#scrollTo=
JovhcSy1NIhr

https://www.cis.upenn.edu/~cis580/Spring2015/Projects/proj2/proj2.pdf
https://www.cis.upenn.edu/~cis580/Spring2015/Projects/proj2/proj2.pdf
https://scipy-cookbook.readthedocs.io/items/bundle_adjustment.html
https://scipy-cookbook.readthedocs.io/items/bundle_adjustment.html
https://pyimagesearch.com/2021/11/17/computer-graphics-and-deep-learning-with-nerf-using-tensorflow-and-keras-part-2/
https://pyimagesearch.com/2021/11/17/computer-graphics-and-deep-learning-with-nerf-using-tensorflow-and-keras-part-2/
https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/vision/ipynb/nerf.ipynb#scrollTo=6HSYxrkAsW-S
https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/vision/ipynb/nerf.ipynb#scrollTo=6HSYxrkAsW-S
https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/vision/ipynb/nerf.ipynb#scrollTo=6HSYxrkAsW-S
https://colab.research.google.com/drive/1rO8xo0TemN67d4mTpakrKrLp03b9bgCX#scrollTo=JovhcSy1NIhr
https://colab.research.google.com/drive/1rO8xo0TemN67d4mTpakrKrLp03b9bgCX#scrollTo=JovhcSy1NIhr
https://colab.research.google.com/drive/1rO8xo0TemN67d4mTpakrKrLp03b9bgCX#scrollTo=JovhcSy1NIhr

	Phase 1 : Classical SfM pipeline
	Overview
	Dataset
	Feature MAtching and RANSAC using Fundamental matrix
	Essential Matrix Calculation
	Camera Pose Estimation and Cheirality Condition using Triangulation
	Linear PnP, RANSAC, Non-Linear PnP.
	Bundle Adjustment
	Results Analysis

	Phase 2 : Deep Learning - NeRF
	Introduction
	Model Input
	Ray Generation
	Sample Points
	Positional Encoding

	Network - Multi Layer Perceptron
	Volume Rendering
	Loss Function
	Network training parameters
	Results - Train and Test
	Conclusion and Problems Faced

	References

