
Structure-from-Motion (SfM) and Neural Radiance
Field (NeRF) - RBE549 Project 3

USING 5 LATE DAYS

Ajith Kumar Jayamoorthy
Robotics Engineering Department

Worcester Polytechnic Institute
Worcester, MA, U.S.A.
ajayamoorthy@wpi.edu

Shiva Kumar Tekumatla
Robotics Engineering Department

Worcester Polytechnic Institute
Worcester, MA, U.S.A.

stekumatla@wpi.edu

Abstract—This document consist of project implementation
of 3D reconstruction of a scene from multiple 2D image. Two
different approaches are considered: First one is the traditional
Structure from Motion (SfM) method. Second is an deep learning
approach using the Neural Radiance Fields (NeRF). The results
and observations for each method as been recorded in this
document.

I. INTRODUCTION

The main objective of the project is to generate a 3D
model of a particular scene from multiple 2D images captured
from different perspectives. Two methods have been studied
and implemented in this project. In the first method, called
the Structure from Motion (SfM), 6 images have been given
to start with, a text file describing the 2D image point
correspondences between all possible image pairs and the
calibration matrix of the camera used for capturing the images.
In case of the second method, a new deep learning approach,
called the Neural Radiance Field (NeRF) has been used to
train a model that helps in the evaluation of coordinates for
reconstruction of the scene in 3D. There sets of lego images
have been given, namely, train, test and val for training, testing
and validation respectively. Each Camera parameters for each
image have been further given by .json files to used for the
training purpose.

II. TRADITIONAL APPROACH - STRUCTURE FROM
MOTION (SFM)

The traditional method consists of following steps:
1) Feature Matching and Outlier rejection using RANSAC
2) Estimating Fundamental Matrix (F)
3) Estimating Essential Matrix (E)
4) Estimate Camera Pose from Essential Matrix
5) Check for Cheirality Condition using Triangulation
6) Perspective-n-Point
7) Bundle Adjustment

A. Feature Matching and Outlier rejection using RANSAC
Initially, there are 6 images provided which are from differ-

ent camera perspectives of the same building with fixed camera

parameters. Each pair of images have lot of pixels common.
The figure 1 has one of the sample input images.

Fig. 1. Camera Perspective 1 (Unity Building, WPI) [1]

Feature matching are given in text files and they are pre-
determined by feature descriptors. The given data tends to be
noisy and contains outliers and therefore we will remove the
outliers using RANSAC. Given a pair of images long with
the matches, we use RANSAC with the 8-point algorithm to
estimate the fundamental matrix between them.

B. Estimating Fundamental Matrix (F)
In this method we randomly sample 8 points and then we

estimate the fundamental matrix F. Then we count the number
of points that satisfy the epipolar constraint (x’Fx ≈ 0) and
finally select the fundamental matrix that results in the largest
number of inlier correspondences. The Fundamental matrix
estimated using the above method is as follows:

F =

−6.4121e− 07 −2.4365e− 05 1.3846e−
2.8041e− 05 1.6928e− 06 −3.5683e− 02
−1.5631e− 02 3.4325e− 02 1.0


C. Estimating Essential Matrix (E)

We estimate the essential matrix by from the fundamental
matrix by using the equation E= KTFK, where K is the
camera calibration matrix or camera intrinsic matrix. As in
the case of F matrix computation, the singular values of E are



not necessarily (1,1,0) due to the noise in K. This has been
corrected by reconstructing it with (1,1,0) singular values by
using SVD, as suggested in the reference website [1]. The
Essential Matrix is evaluated and is given below:

E =

−0.01404208 −0.45120026 0.21074795
0.51477257 0.0415464 −0.82473738
−0.24096739 0.8640367 0.01652605


D. Estimate Camera Pose from Essential Matrix

The first camera is considered to be the origin of the
global/world coordinate system. The second camera data is
taken into consideration and based on the essential matrix,
four different configurations of the second camera from the
first camera are calculated in the form of translation vector
(C) and Rotation matrix (R). They are evaluated using singular
value decomposition as follows:

E = UDV T

W =

0 −1 0
1 0 0
0 0 1


The four configuration are calculated as follows:

C1 = U(:, 3) R1 = UWV T

C2 = U(:, 3) R2 = UWV T

C3 = U(:, 3) R3 = UWTV T

C4 = U(:, 3) R4 = UWTV T

E. Cheirality Condition using Triangulation

1) Linear Triangulation: Using the 4 estimated camera
poses, we found out the 3D world points corresponding to
the matches between the two images. This was done by
performing SVD on a system of linear equations to minimize
the L1 distance between a projected 3D point and the actual
2D image point.

2) Cheirality condition checking: After that using the
generated 3D work points and the camera poses, the cheirality
check was performed to get the best camera pose by using
the condition r3(X - C) > 0, where r3 is the third row of the
Rotation matrix (Z-axis of the camera), X is the 3D global co-
ordinates and C is the translation vector of the camera centre
in global co-ordinates. The configuration which satisfies the
Linear triangulation condition is visualized as shown in figure
3

3) Non-Linear Triangulation: Given two camera poses
and linearly triangulated points X, we can optimize the re-
projection error of the 3D points in the image plane. We
accomplish this task by using the optimize function from the
scipy library given as follows scipy.optimize.least squares

Fig. 2. Linear and Non-Linear Triangulation for first two camera poses [1]

F. Perspective-n-Points (PnP)

Since we have a set of n 3D points in the world, their 2D
projections in the image and the intrinsic parameter; the 6 DOF
camera pose can be estimated using linear least squares. This
fundamental problem, in general is known as Perspective-n-
Point (PnP). For a solution to exist, the number sets of 3D
points used should be greater than or equal to three i.e. n≥3

1) Linear Camera Pose Estimation (Linear PnP: Given
the correspondence between the image points(x) and the world
points(X) along with the intrinsic parameters of the camera
(K), we first calculated the inverse of the intrinsic parameter
matrix to normalise the image points. Then we solve the
system of equations by using the Ax = 0 to to get linear least
squares solution with SVD.

2) PnP RANSAC: Linear PnP is prone to error as there are
outliers in the given set of point correspondences. To overcome
this error, we again use RANSAC to make our camera pose
more robust to outliers.

3) Non-Linear PnP: In the Non-Linear PnP we were trying
to minimize the projection error by optimizing the rotation ma-
trix and translation vector using the correspondences given be-
fore. The optimization is done same as in case of Non-Linear
triangulation using the scipy.optimize.least squares function.
The re-projections of the triangulated 3D world points after
are as shown in figure 4

G. Bundle Adjustment

1) Visibility Matrix: We create a matrix based on the
camera poses and the visibility of the given world point from
that particular camera pose. The rows of the matrix represent
the camera pose index and the columns represent the index of
the real world co-ordinates. For every world point index, 0 if
marked if there is no visibility from a particular camera index
and 1 is assigned if the point is visible from that particular
camera index.



Fig. 3. PnP results before Linear and Non-Linear Triangulation [1]

Fig. 4. Camera Pose estimation after PnP optimization and Triangulation [1]

2) Bundle Adjustment Implementation: After the Non-
Linear PnP, the new Rotation matrix and translation vector
obtained are further optimized. The input the bundle ad-
justment function are the World coordinates (X), the new
camera co-ordinate x, the camera parameter, rotation matrix
(R), translation vector (C) and the visibility matrix (V). Further
optimization of the rotation matrix (R) and translation vector
(C) are performed by using the least squares method from the
scipy.optimize library. The error function considered is same
as the re-projection error used in the previous optimization
problems. Based on this error the optimization process is done
and new values of R and C are obtained. Along with this

parameters, new global co-ordinates set (X) is also passed as
the output.

III. DEEP LEARNING APPROACH - NEURAL RADIANCE
FIELD (NERF)

A. Data

The data for NeRF is given from the original authors link.
[2] The input data consist of three files, namely, train, test and
validation with images consisting of a lego model of a object.
A sample image is shown in figure 6

Fig. 5. Example train image used by the NeRF network [1]

B. NeRF

The Neural Radiance Field or simply NeRF is the state-of-
the-art method that generates complex novel view of an scene
by optimizing the underlying volumetric scene function using
a sparse set of input images. The input is provided as a 5D
function with each images, where each pixel point co-ordinate
in 3D space is provided as (x,y,z) co-ordinates followed by the
direction of each scene with respect to the global co-ordinates
as (θ; ϕ). [4]

C. Architecture

NeRF takes a set of input images of a scene and renders
the complete scene by interpolating between the scenes. The
output is a volume whose color and density are dependent on
the direction of view and emitted light radiance at that point.
For each ray, we get an output volume and all these volumes
make up the complex scene. [5]

The following are the steps to render this NeRF [5]:

1) march camera rays through the scene to sample 3D
points

2) use points from step 1 and their corresponding 2D
viewing directions(θ, ϕ) as input to the MLP to produce
an output set of colors (c = (r, g, b)) and densities σ,

3) use volume rendering techniques to accumulate those
colors and densities into a 2D image.



Fig. 6. (a) Sampling 5D coordinates (location and viewing direction) along
camera rays; (b) feeding those locations into an MLP to produce a color
and volume density; c)using volume rendering techniques to composite these
values into an image; (d) optimize the scene representation by minimizing the
residual between synthesized and ground truth observed images [3]

REFERENCES

[1] https://rbe549.github.io/fall2022/proj/p3/
[2] https://drive.google.com/drive/folders/1lrDkQanWtTznf48FCaW5lX9ToRdNDF1a
[3] Mildenhall,B., Srinivasan,P., Tancik, M., Barron, J.T., Ramamoorthi,R.,

& Ng,R. (2020, August 3). Nerf: Representing scenes as neural radiance
fields for view synthesis. arXiv.org. Retrieved November 10, 2022, from
https://arxiv.org/abs/2003.08934v2

[4] https://medium.com/swlh/nerf-neural-radiance-fields-79531da37734
[5] https://www.analyticsvidhya.com/blog/2021/04/introduction-to-neural-

radiance-field-or-nerf/


