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Abstract—The goal of this project is to estimate a three-
dimensional structure from two-dimensional image sequences
that are linked by changes in camera motion (orientation and
translation). This is commonly referred to as Structure from
motion. There are several algorithms that accomplish this. We
hope to learn how to recreate 3D structures from a given dataset
of 2D images in this project. The assignment is divided into two
phases:

Phase 1: Traditional approach- In this phase traditional approach
to Structure from Motion (SfM) is implemented. The detailed
process for the same is explained further in the document.
Phase 2: Deep learning approach- We implement NeRF in this
section using PyTorch.

Index Terms—Triangulation, RANSAC, Fundamental matrix,
Essential Matrix, Bundle Adjustment, NeRF.

I. PHASE 1: TRADITIONAL APPROACH

In this section, with a given set of 5 images from a
monocular camera and their feature point correspondences, we
reconstructed a 3D scene while also obtaining camera poses
with respect to the scene.

This approach has six main basic steps:

1. Estimate Fundamental Matrix from the given SIFT feature
correspondences.

2. Estimate the Essential matrix using the fundamental matrix
and Estimate camera poses.

3. Refining camera pose using Cheirality condition and Linear
Triangulation.

4. Calculating the Visibility Matrix

5. Performing Bundle Adjustment.

A. Fundamental Matrix Estimation

The feature point correspondences from all of the text files
were parsed and converted to an appropriate format for use in
the rest of the pipeline. To deal with outliers in the data, we
make use of the Random Sampling Consensus (RANSAC).
We estimated the inlier-feature correspondences to use in the
subsequent steps by estimating the Fundamental matrix and
performing RANSAC with an epipolar constraint.

Using the normalized 8-point algorithm, we computed the
Fundamental matrix only for images 1 and 2. The 8-point
algorithm involves using singular value decomposition to solve
a linear solver matrix generated by stacking the kroenker
product between 8-point correspondences.

B. Essential Matrix and Camera Pose estimation

Given the rotation and translation, the Essential matrix
E connects corresponding image points from both cameras.

Fig. 1: RANSAC

Decomposing E yields four mathematically possible poses
which are the 4 combinations of the possible camera locations
with respect to the 2 image planes. The obtained Essential
matrix is:- .

C. Refining Camera Pose and Linear Triangulation

To disambiguate 2 poses out of the 4 and get the 2
unique poses, we use the chierality condition. The Cheirality
Condition requires that the reconstructed points be visible to
the cameras. We test this condition by triangulating the 3D
points using linear least squares to determine the sign of the
depth Z in the camera coordinate system relative to the camera
center. The camera pose that gives the maximum number of
positive depth points is selected.

We can perform Linear triangulation to obtain the 3D
location of a world point given a point correspondence and
the projection matrix estimated using the unique disambiguate
camera pose (R, C) and intrinsics (K) parameters.

D. Non-linear triangulation

Now, having obtained the 3D points from Linear triangula-
tion from the selected pose, we can refine these 3D points by
performing optimization. We try to minimize the reprojection
error i.e. the geometric error is re-calculated by projecting the
points on the image plane.
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Fig. 2: Non Linear Triangulation

E. Linear PnP, PnP RANSAC, and Non-Linear PnP

Given the intrinsic camera matrix K, 3D points, and their
corresponding 2D points, we can compute the camera poses
which is termed the perspective-n-point problem. We solve
the equations having 6 2D and 3D points to get an initially
estimated camera pose. PnP is prone to error as there are
outliers in the given set of point correspondences. To over-
come this error, we can use RANSAC to make our camera
pose more robust to outliers. To formalize, given N6, 3D-
2D correspondences, implement the following function that
estimates camera pose (C, R) via RANSAC. Similarly to non-
linear triangulation, we refine the output from LinearPnP in
Non-linear PnP by minimizing the reprojection error.

F. Bundle Adjustment

We are one step closer to having the 3D reconstructed output
of the scene now that we have the set of refined 3D points from
various perspectives and camera poses. Bundle adjustment
refines both camera poses and 3D points at the same time
by minimizing reprojection error. It simultaneously refines the
3D coordinates describing the scene geometry, relative motion
parameters, and optical characteristics of the cameras used to
acquire the images, using an optimality criterion involving the
corresponding image projections of all points.

The visibility matrix is a Boolean matrix that denotes if a
particular feature is visible in a particular image. In bundle
adjustment, we create a sparse matrix that records whether a
2D point observation belongs to a particular parameter.

II. PHASE 2: NERF

In this section, we implement the Neural Radiance
Fields(NeRF) paper. It is a method that synthesizes novel
views of complex scenes given finite input images to the
network. It optimizes a continuous volumetric scene function
and achieves state-of-the-art results.

Fig. 3: Bundle Adjustment

A. Data Loading

For loading the data, we have taken the data from the
original authors’ link which has 3 sets of 100 images for each
of train, validation and test. We have used the provided JSON
files for each set to get the transformation matrices for each
camera pose. The focal length is taken to be 138.88887. The
images and transformation matrices are basically lists that are
converted to torch tensors and returned.

B. Ray Generation and Query Points

We generate the rays that start from the camera centers
and pass through each pixel of the image acquired from that
particular camera. The rays are then sampled at a certain
number of points (32 or 64) to get points on each ray. These
points are called query points. These points are in the form
of a torch tensor. These query points are then flattened by
converting them into a vector of dimension (N, 1). The flattened
points are encoded by an encoding function before passing
them to the model.

C. Model Architecture

The model architecture is the same as the one used by the
authors and given in the paper. It is an MLP model with 8 fully
connected layers each one activated by the ReLU function. It
features skip connections after every 4 layers where the output
is concatenated with the input before giving to the next layer.
The 8th fully connected layer has no activation while the last
fully connected layer(10th) uses a sigmoid activation to output
the RGB map. The architecture is shown in the figure below.
The loss function used is the MSE loss and the optimizer is
ADAM. The learning rate is taken to be 5e-4.

D. Radiance field and Volume Rendering

The model output is un-flattened to obtain the radiance field.
Then we perform volume rendering which then re-synthesizes
the RGB image. It takes input as the radiance field and renders
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Fig. 4: Detected corners (Custom Set 1)

it given the origin of each ray in the input group of rays(chunk) Fig. 5: lteration - 100

and the sampled values along with them. Volume rendering
also gives the depth map and the accumulated transmittance
map but we are only using the RGB map.

E. Results

We run our model for 1000 iterations and we are saving
the rendered RGB image which is the model output every 100
iterations so that we have a brief idea of how the rendered
image improves over time. These 10 output images are shown
below.

F. Improvements that can be made and observations

Fig. 6: Iteration - 200
We observed that changing the percent of inliers affects '8 eration

the RANSAC calcultaions and in-turn the stitching. So to
improve the accuracy for stitching we increased the probability
of outliers in every iteration. We also decreased the number
of corners that are generated iteratively. When the images go
beyond a threshold number of 3 this process is triggered. This
ensures that the best matches are retained and the homography
matrix calculated is proper.

We also wanted to test another approach where we separate
the number of images into three parts and stitch them together
at the end and also dynamically select matches from only
specific regions of the images. This would probably lessen
the problems while stitching and blending. However, due to
time constraints, this approach was not implemented.

Fig. 7: Iteration - 300

G. Results

Following are sample results for Test Setl and Custom Set1.
Other results are shown at the end of the report. The results
from all the panoramas are shown in Fig (33).

H. Special thanks to -
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https://www.cis.upenn.edu/ cis580/Spring2015/Projects/proj2/proj2.pdf
https://github.com/hal2001/Camera-Rectification-and-
Structure-from-Motion
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Fig. 8: Iteration - 400
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Fig. 9: Iteration - 500

Fig. 10: Iteration - 600

Fig. 11: Iteration - 700

Fig. 12: Iteration - 800

Fig. 13: Iteration - 900

Fig. 14: Iteration - 1000



