
Project 3
Buildings built in minutes - SfM and NeRF

used 11 late days

Aadhya Puttur, Alex Chiluisa

I. INTRODUCTION

In this paper we will be constructing 3D coordinates and
scenes from 2D images. In phase 1 we will be implementing
Structure from Motion (SfM), which is reconstructing a 3D
scene and simultaneously obtaining the camera poses of a
monocular camera w.r.t. of the given scene. We do this
by obtaining images of different view points of one scene
and finding coordinates that correspond to one another in
each image using SIFT. Then we estimate camera poses
using math from epipolar geometry in order to estimate
the 3D coordinates from the 2d image points. We then use
many optimization techniques to minimize the error from the
estimation.

Write what we will be doing in phase 2

II. STRUCTURE FROM MOTION DATA

To start predicting camera poses of ever camera pose, we
start with structure from motion with 2 views. In Fig 1,

Fig. 1. Structure from Motion 2 views, (MathWorks)

we can see that structure from two stationary cameras, one
camera will be considered as the origin. Camera 2 references
camera 1’s coordinates as the origin to determine its own
coordinates by some arbitrary scale. The epipolar geometry
is the intrinsic parameters which is known (K matrix), and
the relative pose. The pre-steps to perform structure from
motion is to first have a set of images to work with. These
images are already distortion corrected and resized to 800
x 600 px. SIFT key-points and descriptors are used since
SfM heavily relies on good feature matching and key point
matching to find image correspondences. We have the rgb

A. Chiluisa is with the Department of Robotics Engineering,
Worcester Polytechnic Institute, Worcester, MA 01609, USA (e-mail:
ajchiluisa@wpi.edu)

A. Puttur is with the Department of Computer Science, Worcester Poly-
technic Institute, Worcester, MA 01609, USA (e-mail: aputtur@wpi.edu)

Fig. 2. Images of Unity Hall used to perform SfM

values of each feature in each txt file corresponding to each
of the 5 images, along with the coordinates of the image
key-points of the corresponding features.

III. FUNDAMENTAL MATRIX

We use epipolar geometry to find the pose of the camera
relative to the first camera

Fig. 3. Epipolar Geometry

The epipole is the point of intersection of the line joining
the camera centers with the image plane, Fig 19. We
apply this epipolar constraint to find a relationship of the
correspondences of two images. The Fundamental matrix
which is size by 3 x 3, it has 7 degrees of freedom. It’s
a rank of 2. We first find two column vectors in the plane
that correspond such as x and x

′
. The fundamental matrix is

represented by the letter F. Fig 4 represents the relationship

Fig. 4. x′TFx = 0

between these column vectors. Every perfect correspondence
between two column vectors of two images that face the
same feature vector, equals zero every time.The null spaces
of F are the epipole e and e′. This epipole line is passing
through x and x′ respectively and is a 3 component vector.

Therefore if we find all the epipolar lines of each image
meaning a line from every x and x′ to e and e′ respectively,
all lines will be passing through e and e′ Fig 4. We set
up a homogeneous linear system of 9 unknowns and we are
solving for m correspondences where x′T

i Fxi = 0 and i =
1, 2, ...m. Although, we talked about how the fundamental
matrix can be used, what specifically is it and how can it be
calculated? We use our K, our intrinsic camera parameters to
find F. We take the pinhole equation. We take this equation

Z

XY
1

 = K

XY
Z

Fig. 5. Pinhole Equation

Fig 5, and expand it by getting the world points using the
pinhole equation for both images. We combine these world
point equations from the two images We take the equation
that xEx′ = 0 where E is the essential matrix. E = TxR
where R is the orientation of x

′
camera in x’s frame. It is

the 3 x 3 rotation matrix between the two cameras. T is
the position of x’s camera in x’ frame. We take these two
correspondence equations of the world point and feed it into
xEx′ = 0 and receive the following.

[x′, y′, 1] = K ′−TEK−1

xcm

ycm
1

Fig. 6. The Fundamental matrix derivation is represented

We remove the Z because it is not zero it has to be greater
than 0 because of the chierality constraint (depth positivity)
From Fig 6, we had mentioned K are the intrinsic parameters
but why are there 2 K’s? Well since one camera is referencing
another, the first camera will be represented as the origin
camera where it’s intrinsic parameters are 0s. In Fig 6, the
fundamental matrix is represented as K ′−TEK−1.

This is the Fundamental matrix that has 7 degrees of
freedom because 9 unknowns (3 x 3) - 1 for Scale - 1 for
Rank 2 = 7. However we are going to first ignore that it is
rank 2 for now and estimate 8 parameters and then enforce
the constraint of it being rank 2. Very similar to homography
where each point corresponded to two constraints however
where it is not similar in the F matrix each point contributes
to only one constraint as the epipolar constraint is a scalar
equation. This is also known as the eight-point algorithm.
We summarize calculating the fundamental matrix below.

1) find x and x’ correspondences using SIFT for all sets
of images

2) Use the first two images to start calculating structure
from motion

3) choose 8 random point correspondences to calculate F
by stacking them Fig. 7

4) Find F through Ax =0 Fig. 7
5) Get the Singular Value Decomposition(SVD) of the

output

6) F is the last column of V corresponding to least singular
value

7) Take the SVD again
8) Enforce rank 2 by making the second output from SVD

(SVD(F) = U, S, V) S to be 0 in order to zero out the
last singular value.

9) Multiply U, S, and V to get the Fundamental matrix

 x1x
′
1 x1y

′
1 x′

1 y1x
′
1 y1y

′
1 y′1 x′

1 y′1 1
...

xmx′
m xmy′m x′

m ymx′
m ymy′m y′m x′

m y′m 1

f11
f21
f31
f12
f22
f32
f13
f23
f33

Fig. 7. Ax = 0, calculating the Fundamental matrix equals 0

Just to further explain step 7 and 8 where our output is U,
S, V. U is an orthonormal basis thing, D is a diagonal matrix
of singular values, and V is orthonormal of the transpose.
Although we can’t just go with any random 8 points to
calculate a Fundamental matrix. We need to pick the 8 points
that gives us a Fundamental matrix where the correspondence
of the first and second image point with the fundamental
matrix gives us zero x′TFx = 0. Although since the
correspondences were computed SIFT, we are bound to get
noise and the relationship would always exactly be 0. Wr
match outlier rejection by performing RANSAC. In Fig. 8

Fig. 8. Algoritm for Get Inliers RANSAC Fundamental Matrix

we use the RANSAC algorithm to obtain a better estimate
of the fundamental matrix by choosing the fundamental
matrix with the maximum inliers. We then recalculate the
Fundamental matrix with the inliers.

IV. ESSENTIAL MATRIX

The Essential matrix is another 3 x 3 matrix, but with some
additional properties that relates the corresponding points

assuming that the cameras obeys the pinhole model (unlike
F). Previously, we observed the Essential matrix in Fig. 6
where F was represented as F = K ′−TEK−1 although
we did not use the intrinsic parameters or the Essential
matrix to calculate F but only the correspondences. Now we
can change the equation to get E where E = K ′TFK or
E = TxR. This is where two random images in the world
can be related by one equation where translation and rotation
are coupled. We use this to disambiguate the two values from
each other because the essential goal is to get the pose of
the camera. Therefore we get the essential matrix using the
intrinsic parameters and the optimized Fundamental matrix
from the previous step.

V. CAMERA POSES

The camera pose consists of 6 degrees-of-freedom (DOF)
Rotation (Roll, Pitch, Yaw) and Translation (X, Y, Z) of the
camera with respect to the world.

E = UDV T = U

1 0 0
0 1 0
0 0 0

V T

Fig. 9. Singular Value Decomposition of Essential Matrix

The D has a eigen values of 1 (diagonal elements) and
the last diagonal value is 0 because it has a rank 2 and
it is not full rank. These values are 1 because we are
using normalized camera coordinates when we are doing the
essential matrix computation. This differs from Fundamental
matrix because F is in pixel coordinates. We know from the
Essential Matrix that E = TxR and we need T and R to
get the camera pose. The left null space of E is the epipole
of the second image or x’ where TTE = TT (txR) = 0.
Therefore, the translation vector is the third column of U
when you take the SVD of E. We get two solutions for U
because the sign can be flipped, U and -U. U is a orthogonal
matrix, the translation vector has to be orthonormal to the
first two columns of U so Tx = [u1xu2]

E = TxR = U

 0 1 0
−1 0 0
0 0 0

UTR = U

1 0 0
0 1 0
0 0 0

V T

Fig. 10. Rotation and Translation

R = U

 0 1 0
−1 0 0
0 0 1

V T or.U

0 −1 0
1 0 0
0 0 1

V T

Fig. 11. USV TTwosolutionsforS

The translation and rotational vector is calculated in Fig.
10 where the rotation vector R is a SO(3) matrix. We then
get rotation matrix from Fig. 11 and T = U3 or T = −U3.
Therefore, there are 4 solutions:

1) C1 = U(:, 3)andR1 = UWV T

2) C2 = −U(:, 3)andR2 = UWV T

3) C3 = U(:, 3)andR3 = UWTV T

4) C4 = −U(:, 3)andR4 = UWTV T

since R has two solutions and T has two solutions We cannot
have 4 different solutions, one of the solutions has to be valid.

VI. TRIANGULATION

In triangulation, we are measuring 2 missing distances
with a known angle. We can use the cheirality condition to
select the best camera pose out of the four possible camera
poses. We do this by triangulating 3D points given two
camera poses. We will first use linear triangulation to get an
initial estimate of the 3D world points. Given two camera
poses, (C1,R1) and (C2,R2), and correspondences, x1 ←→
x2, we will triangulate 3D points using linear least square.
Our first camera pose will always be the origin point so C1
and R1 will be default values for the reference camera.

P = KR[I3x3 − C]

Fig. 12. Camera Pose representation

[
x
1

]
X

Px

[
X
1

]
= 0

Fig. 13. Pinhole Projection Equation

The camera pose can be represented Fig. 12. This is
the projection matrix. K represents the camera intrinsic
parameters, R is the 3x3 rotational matrix, I is the identity
matrix, and C is the 2 translation solutions that we discussed
in part V. From this projection matrix we can use the relation
where if 2 vectors are equal their cross product is 0.

Recall the pinhole equation, although this time using the
same equation we will produce the pinhole projection equa-
tion Fig. 13. We perform the pinhole projection equation
for both the first and second image. We then stack these
equations in a 6 x 6 matrix. We then get the SVD of this
matrix and the world point X is in the matrix V. We perform
the calculation to get world point for every single pose of
the corresponding two images. The rationale behind this is
that we want to find what pose is the right pose. We perform
this by using the chierality constraint.

The chierality constraint or the depth positivity constraint
enforces that we choose the pose that has the maximum
points in-front of both the cameras. We want the pose shown
in Fig. 14 where the points are in front of the camera. WE do
this by performing the chierality constraint equation Fig. 15.
r is the third row of R (the rotation matrix), X is the world
location, and C is the camera translation vector. We perform
the chierality constraint for every capital X. The pose that
outputs the maximum number of points is the correct pose.
We perform this in DisambiguateCameraPose.py.

Once we get our camera pose, the X world points for
the camera pose, as well as the image 1 and image 2
correspondences, we want to minimize the error for the
X world points. This reason behind is because we have

Fig. 14. Chierality, 4 different poses

rT3 (X − C) > 0

Fig. 15. Chierality Constraint

only been minimizing error using algebraic error through
using SVDs and minimizing the error of Ax-b. The problem
with this is because algebraic error does not have geometric
meaning as it does not really make sense physically. To
counter this we will perform geometric error.

egeom = ||x̂− x||22

egeom = (
P1X

P3X
− x)2 + (

P2X

P3X
− y)2

Fig. 16. geometric error of re-projection and image coordinate

argminx||
Egeom,x

Egeom,x′
||22

Fig. 17. optimization problem

We perform geometric error by using our estimated capital
X and re-projecting it back into the image. This is called
nonlinear triangulation because we have some estimate of
where the re-projection might be but we want to get a better
estimate to have a better prediction of the world point. How-
ever our re-projection definitely will not be perfect because
we take the forward projection and inverse projection. The
use the projection form of the geometric error equation Fig.
16. We use this nonlinear equation to minimize. Refer to Fig.
12 for the projection matrix where one is identity and X is
homogenized.

In nonlinear triangulation we perform the optimization
problem shown in 17. We want to figure out the world point
value of X such that error of both the images for all the points
is minimized. We take the world point and re-project it on
both images and we know what the pixel correspondences
and we want to minimize the pixel error and we do this for
every single point on the image.

We do this easily by using scipy.optimize.leastsquares
and the parameter that we are optimizing is the world point
X.

(a)

(b)

Fig. 18. Linear Triangulation (a) vs Nonlinear Triangulation (b) of camera
pose and 3D points projection

Fig. 19. Epipolar Geometry

VII. PERSPECTIVE-N-POINTS

We have been talking about structure from motion of 2
views so far although now how do we incorporate more than
2 views? Now that we have done 2 views the rest of the
images have some estimate of reference for their world X
points.

Recall that we have the 2d to 3D correspondences of two
images and now we want to get the camera poses for n
images.

Now that we have estimated the camera pose of the new
image, now we need to reject outliers in a linear PnP using
RANSAC. We do this by measuring the re-projection error
and we are trying to find the camera pose R, C that has a
minimum re-projection error on the inlier set. Recall in part
VI. we had to find the best camera pose and Fig. 8 where we
used RANSAC to find the best inlier set. Similarly with the
nth image and its image coordinate correspondences along
with our estimated world points, we must find the correct
camera pose for the nth image.

Fig. 20. Perspective-n-Points RANSAC

λx =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

X
Y
Z
1

Fig. 21. Linear Pinhole Camera Projection

We use PnP RANSAC Fig. 20 algorithm to estimate
the best camera pose by choosing the maximum number of
points in front of the error under a given re-projection error
threshold. We choose 6 correspondences only because we
are using a trivial version of PnP. We take these random

6 correspondences and feed them into LinearPnP. Recall
that linear PnP minimizes algebraic error and nonlinear
PnP minimizes geometric error. In linear PnP we get the
projection values for small x and y. There are 11 number
of unknowns in this equation because there are 12 values
(3 x 4 matrix) - 1 (scale) = 11 actual unknowns. It is a 2
x 12 matrix for one point and we do this for n number of
points. We perform the same procedure like we did for Part
V. and we get the SVD of this matrix. Through this process
of obtaining the rotation and translation vectors from P, we
get the camera pose of the nth image using the intrinsic
parameters K. A linear least squares system that relates the
3D and 2D points can be solved for (t,R) where t = RtC.

Non-linear refinement of PnP minimizes the geometric er-
ror because due to the divisions and projection, the system is
non-linear. Our goal is to minimize geometric error between
measurement and projected 3D point.

argminq,C =
∑

(x−
PT
1,iXi

PT
3,iXi

)2 + (y −
PT
2,iXi

PT
3,iXi

)2

Fig. 22. Optimization problem Nonlinear PnP

Recall when we performed nonlinear triangulation in part
VI although now we are estimating the camera pose of the
new camera Fig. 22. We already have a map established
from the first two images and we are basically trying to
estimate the third image’s camera pose with respect to that
known map. Again like we did for non-linear triangulation
we are using scipy.optimize.leastsquares to obtain this
minimization.

In Fig. 22 we are minimizing q so we went from a
rotational matrix to a quartonion space. When we represent
rotation as quartonian q it is much better to optimize because
when we try to do jacobians later on it is much more efficient
as it converges better.

VIII. BUNDLE ADJUSTMENT

Now that got poses and World point for the rest of n
images and minimized the error for it, we can optimize even
further by doing bundle adjustment. We have 4 cameras poses
and we need to adjust the camera poses and 3D projection
points based on the real image pixel coordinates.

(a) (b)

Fig. 23. 3D world points with camera poses, image 1 is a close up

We first create a visibility matrix in order to see which
points are visible to each camera. We find the relationship
between a camera and point, by constructing a I×J binary
matrix, V where Vij is one if the jth point is visible from the
ith camera and zero otherwise. Then with the given initialized
camera poses and 3D points, we refine them by minimizing
re-projection error using bundle adjustment Fig. 24. We
specifically minimize the C, R in quartonian space, and X
the world points.

Fig. 24. Bundle Adjustment Optimization problem, Used Least Squares

Our structure from motion is complete. You can find the
entire pipeline of the implementation in Fig. 25.

Fig. 25. Algorithm Overview of SfM

IX. NERF

NeRF is a method for constructing scenes through vol-
umetric representation using images from different angles.
NeRF utilizes a 5D coordinate system where x = (x, y, z)
and d = (θ, ϕ) as input. Relying on light fields, it describes
how light rays travel through x in every direction d. Fig-
ure 27 shows the rendering and training process. Then using
positional encoding, it elevates the 3D coordinates of their
scene into a higher dimensional frequency. Subsequently, it
applies its hierarchical volume sampling to allow it to bias
the sampling of the ray to encode as much information as it
can regarding the object with the same samples.

A. Architecture

The overall architecture is shown in figure 26. NeRF relies
on how its neural net takes the 5D coordinate inputs and
generates a color (R, G, B) and density (γ) for each point.
This 4D coordinate forms rays that intersect the object. By
applying volume rending these values are composited into an
image. Then the rendering loss of this image is calculated on
a per-pixel basis. Using several viewing directions as inputs
simplifies the generation of lighting fields. NeRF architecture
is based on its neural net, and how its outcomes produce
useful loss functions. By optimizing the network with the
2D image loss, we increase the accuracy of the network
to predict images from several directions to generate a true
shape representation of the object.

Fig. 26. The overall architecture of NeRF

B. Position Encoding

Employing position encoding on the coordinates before
feeding the network, we can map the 3D coordinate into a
higher dimensional space, enabling a better fitting of data
with high-frequency variation leading to sharper models.

C. Hierarchical Sampling

By creating two separate networks, coarse and fine net-
works we can sample around regions with higher impact in
the final rendering avowing sampling-free spaces or occluded
regions that do not contribute to the final result. Therefore,
the coarse network initially evaluated the rays using stratified
sampling, where the ray was divided into N equally spaced
bins, and a sample was uniformly drawn from each bin. The
outcomes of the coarse network are then used as input of the
fine network to converge ray samples along key points in the
volume which biases the samples to sections with relevant
content. Then, the final render color for the ray is computed
by evaluating the fine network

In this work, we implemented and verify the work de-
scribed in [1]–[4]. Huge challenges arise at the beginning
of the implementation. Understanding the concepts of some
of the sections of the paper, such as how the volume
rendering utilizes the neural net to be fed, was challenging
to follow. Additionally, the complex math and its code were
a drawback in the attempt to implement our system. NeRF
significantly reduces the gap to recreate 3D scenarios from
2D images by introducing viewing directions and providing
more accurate lighting features. NeRF can represent finer
details than previous work.

Fig. 27. The NeRF volume rendering and training process from the selection to the sampling points for every pixel in an image (left) through generation
of individual pixel colors via volume rendering (right)

Fig. 28. Scene recreation and target lego

REFERENCES

[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng, “Nerf: Representing scenes as neural radiance fields
for view synthesis,” Communications of the ACM, vol. 65, no. 1, pp.
99–106, 2021.

[2] L. Yen-Chen, “Nerf-pytorch,” https : / / github.com/yenchenlin /nerf -
pytorch/, 2020.

[3] https://github.com/krrish94/nerf-pytorch.git.
[4] https://github.com/sakshikakde/SFM

https://towardsdatascience.com/its-nerf-from-nothing-build-a-vanilla-
nerf-with-pytorch-7846e4c45666.

