
FaceSwap
USING 1 LATE DAY

Ajith Kumar Jayamoorthy
MS in Robotics Engineering

Worcester Polytechnic Institute
ajayamoorthy@wpi.edu

Shiva Kumar Tekumatla
MS in Robotics Engineering

Worcester Polytechnic Institute
stekumatla@wpi.edu

Abstract—In this project, we presented three different ways for
swapping faces. The first two methods are traditional computer
vision methods and the third one is deep-learning method. As part
of traditional methods, we presented the detailed explanation of
face warping using triangulation and thin plate spline (TPS). For
triangulation, we used Delaunay Triangulation method, which
is the dual of Voronoi triangulation. In case of deep learning
we used the pre-trained MobileNet-V1 to provide landmarks,
based on which we implemented face-swap. We used photos of
different celebrities and this project members as the data sources
and presented the results of face-swap among different inputs.
We also considered certain inputs where the results can have
artifacts.

I. PHASE 1: TRADITIONAL APPROACH

A traditional method that can be used for swapping faces
is shown in figure 1.

Fig. 1. Overview of face replacement pipeline

In this approach, initially the face fiducials are detected for
each input image. Once the fiducials are detected, the faces
are warped using either triangulation method or TPS method.
After warping the faces are replaced, and then blended. The
input images considered in this work are shown in the figures
2, and 3.

A. Facial Landmarks Detection

The first step in the traditional approach is to find facial
landmarks. These landmarks are the important points on the
face. We can find the one-to-one correspondence between the
facial landmarks. This is same as detecting corners in the
panorama project. Usage of facial landmarks also reduces the
computational complexity. For obtaining the facial landmarks,
we used dlib library that is built into OpenCV and python.

Fig. 2. Input Image 1

Fig. 3. Input Image 2

The outputs for landmarks detection of each input images are
shown in figures 4 , and 5.

B. Face Warping using Triangulation

We need to use the landmarks obtained above to warp
the faces in 3D. But we do not have any 3D information.
Hence can we make some assumption about the 2D image
to approximate 3D information of the face. One simple way
is to triangulate using the facial landmarks as corners and
then make the assumption that in each triangle the content
is planar and hence the warping between the the triangles in

Fig. 4. Facial Landmarks detection on input image 1

Fig. 5. Facial Landmarks detection on input image 2

two images is affine. Triangulating or forming a triangular
mesh over the 2D image is simple but we want to triangulate
such that it’s fast and has an “efficient” triangulation. We can
use Delaunay Triangulation for this. Delaunay is an efficient
method and can be performed in O(nlogn) time. We want
the triangulation to be consistent with the image boundary
such that texture regions won’t fade into the background
while warping. Delaunay Triangulation tries the maximize the
smallest angle in each triangle. Output after triangulation for
each input image is shown by figures 6, and 7.

From the above triangulation, we obtain the list of co-
ordinates of these triangles for each face. This list consist
of corresponding triangles in each face. Now for each set of
triangles t1 from image 1 and t2 in image 2, we calculate the
Barycentric coordinates for each of these triangles respectively.
The theory behind the calculation of Barycentric coordinates is
given in [1]. After this the corresponding warped co-ordinates
of from face2 is calculated for face1 and vice versa. Then
the pixel values at the given warped co-ordinates are swapped
between the two faces. The resulting image from the process
is as shown in figure 8

Fig. 6. Triangulation of landmarks on input image 1

Fig. 7. Triangulation of landmarks on input image 2

Fig. 8. Output of Warping using Delaunay Triangulation

C. Face Warping using Thin Plate Spline

In triangulation, we are doing affine transformation on each
trinagle.This might not be the best way to do warping since the
human face has a very complex and smooth shape. A better
way to do the transformation is by using Thin Plate Splines
(TPS) which can model arbitrarily complex shapes. Now, we
want to compute a TPS that maps from the feature points in
to the corresponding feature points in . Note that we need two
splines, one for the x coordinate and one for the y. Imagine
a TPS to mathematically model beating a metal plate with a
hammer. In the first step, we estimate the parameters of the
TPS. In the second step, use these estimated parameters of the
TPS models (both x and y directions), transform all pixels in
image 2 by the TPS model. Now, read back the pixel value
from image 1 directly. The position of the pixels in image 1
is generated by the TPS equation.

After that, all the pixels from face 1 are warped to face 2
and all the pixels are replaced. Of course, simply replacing
pixels does not look natural. Selected facial region from the
face 2 is shown figure 9. Warped result of face 2 to match face
1 is shown by figure 10. The final blended output is shown
by 11.

Fig. 9. Selected facial features from face 2

TPS performance is tried on many other inputs as well, and
the results of all these are available in Output folder.

II. PHASE II - DEEP LEARNING APPROACH

In this Phase we are going to use an existing network to get
output for an image in 3D space and based on the input we
would apply 3D TPS and from the warped points obtained as
a output from the 3D TPS, we will work on projecting it into
2D space and then obtaining the corresponding pixel values
to be replaced.

A. Data Generation

In the case of Data, we have to first consider two images
with a face with full visibility. Then the aspect ratio of the
two face images must be made the same as shown in figure
12 and figure 13. After cropping the image, the two faces are

Fig. 10. Warped face 2 to match face 1

Fig. 11. Final Blended Image

combined into one image to be considered as a input for the
Neural Network as shown in figure 14.

Fig. 12. Resized image of face 1

B. Network Architecture and Output

The network used here is a pre-trained model of the
MobileNet-V1 structure. The Architecture is as shown in the
table 15

Fig. 13. Resized image of face 2

Fig. 14. Final Input Image for the neural network

Fig. 15. MobileNet-V1 Architecture

The network was run using the information from reference
[2].The output of the Network provides with a 3D point cloud
file, an object file with pixel values, a text file with the
landmark co-ordinates for each face, Image depth and pose
estimation. Using the landmark coordinates we can implement
the 3D TPS and obtained the relationship function between the
two faces in 3D space.

C. 3D Thin Plate Spline

In case of the 3D spline modification, the implementation
would be such that the equation for the Thin Plate Spline can
be extended to the 3rd dimension by adding the z component
information from the network.

f(x, y, z) = a1+(ax)x+(ay)y+(az)z+

p∑
i=1

wiU(||(xi, yi, zi)−(x, y, z)||1)

(1)

The 3D landmark obtained from the Network is as shown
in figure 16. After obtaining the 3D TPS, We can extract the

Fig. 16. 3D landmark for Face1

respective pixel positions from the obj file using the TPS. Later
the pixel can be swapped and then the image can be project
on the x-y 2D plane, with the z as the normal to the image.
This could possibly given an swapped face output.

D. Conclusion

From the above results it can be observed that the TPS
works much better than the Delaunay Triangulation. Using the
Delaunay Triangulation method, the image is not seamlessly
integrated. There are some rough spots and the interp2d [3]
function had issues with the interpolation of missing values
as well. In case of the TPS, the integration is seamless as can
be observed from the output. In case of the 3D swapping of
faces, the 3D TPS was not working as expected. From my
observation, the implementation has some issue which needs
to be resolved as a future improvement.

REFERENCES

[1] https://rbe549.github.io/fall2022/proj/p2/
[2] https://github.com/cleardusk/3DDFA
[3] https://het.as.utexas.edu/HET/Software/Scipy/generated/scipy.interpolate.interp2d.html

