
RBE 549: Project 2 - Face Swap
Chinmay Kate

M.S. Robotics Engineering
Worcester Polytechnic Institute (WPI)

Worcester, MA 01609
Email: cskate@wpi.edu

Mandeep Singh
M.S. Robotics Engineering

Worcester Polytechnic Institute (WPI)
Worcester, MA 01609

Email: msingh2@wpi.edu

Abstract—In this project we implement computer vision meth-
ods to do face swapping between two images or two faces in a
single image. It is similar to like using Snapchat face filters.
This problem looks simple at first but because human face is
a 3d projection, so just replacing one face with the other will
not look realistic. We will be using some advanced computer
vision pipelines which uses Delaunay triangulation and Thin Plate
Splines which tackle this problem. And in later section, we will
see how this same problem can be tackled with the help of deep
learning.

Index Terms—Face swapping

I. PHASE 1 : TRADITIONAL COMPUTER VISION PIPELINES

A. Introduction

In Phase 1 of homework, our aim is to divide the 3d face
area into multiple small areas and then try to warp those sim-
ilar sections in corresponding images to get a realistic output.
To, implement this we first extract face fiducial landmarks
using already trained model in dlib library. Then we can use
either delaunay triangulation warping method or Thin Plate
Spline warping method to warp and replace the faces. And at
the end we have to implement blending between the swapped
face and original image to maintain a seamless texture. Fig 1
can be referred for the overview of the pipeline followed.

Fig. 1: Overview of the Face Swap pipeline.

B. Detecting face landmarks

To start with the pipeline of face swap, we have to detect
the faces in an image and their corresponding facial landmark
features. For this, we use already trained models of the dlib
library. For our pipeline we have used a model which predicts
68 landmarks depicting a human face. The important thing to

note is the order of these landmarks is same for all the detected
faces, meaning if the 1st feature is giving us the position of the
eye centre in one face then it will be the same in any other
face as well. Using these landmarks we can apply warping
methods to do the process of face swapping. Fig. 2 can be
referred for the detected facial markers on the given image.

Fig. 2: Detected facial landmarks

C. Face Warping and Swapping

After we have detected the facial landmarks, we have to
somehow implement a way to warp one face with respect to
the other face in the image and then swap them. We have two
methods which we are implement and are discussed in detail
below.

1) Using Delaunay Triangulation: Faces can be warped
between two images using delaunay triangulation on the
obtained facial landmarks. In delaunay triangulation method,
triangles are made using the facial landmark points as the
corners of the triangles. Then the assumption is made that all
the triangles within a single triangle lies in same plane so that
we can do affine transformation between two such triangles of
different faces. Delaunay triangulation or duals of the voronoi
diagram are made such that they try to maximize the smallest
angle of the triangle. Delaunay triangles are shown in fig 3.
Below are the steps to be followed after getting the triangles
from the facial landmarks to warp and swap the faces:

• The first thing to make sure is that the triangulation must
match between the two faces so that we will warp similar
part of the faces.To do this, first find delaunay triangle

Fig. 3: Delaunay triangles

list using opencv library on the first face. Then mark the
indices of the landmark list from which all the triangles
are made. Using the same indices from the landmark list
of the second face we will form our triangle list for the
second face.

• To compute all of the following steps, we will first extract
individual triangles from the source and destination faces
. This is done by taking the rectangular region from the
image which includes the full triangle and then applying
a mask of the shape of the triangle on the rectangular
region to get only the triangle region points from the
image.

• For each triangle in the destination face, we compute
the barycentric coordinates. Barycentric coordinates are
nothing but a way to express a pixel position in terms
of triangle vertices it is in. We do this for all the pixel
positions within a triangle.

Fig. 4: Computing barycentric coordinates.

In the above figure, α, β and γ are the barycentric
coordinates for position (x,y) within the triangle whose
vertices are (Bax,Bay), (Bbx,Bby) and (Bcx,Bcy).

• Repeat the above step of calculating barycentric coordi-
nates for all the triangles in the destination face.

• Now, we will calculate the the corresponding pixel posi-
tion in source face which will be equivalent to pixel posi-
tion in destination face. We use our calculated barycentric
coordinates for this purpose as per the below equation.

Fig. 5: Computing pixel positions in source image.

We know the barycentric coordinates, triangle vertices in
source face and we compute the pixel positions (Xa, Ya).
Repeat this for all the triangles.

• Now, we have the equivalent pixel positions in both
faces. We just have to copy back the pixel value from
a pixel position in source triangle to the corresponding
pixel position in destination triangle. But the computed
coordinates of the source image will be floating point
data, so we have to do interpolation to get the desired
intensity value. We use bilinear interpolation for this
purpose.

• Once we interpolate and copy all these intensity values
from source face triangles to destination face triangles,
our warping and swapping part is complete. Notice that
we did inverse warping process as we first calculated the
pixel positions in the source image and then copied that
intensity value in the target pixel position. Results after
warping can be seen in fig (shown only for 1st face).

2) Using Thin Plate Splines: The results of warping by
Delaunay triangulation may not be great because we assume
that all the points in a triangle lies in the same plane which
is not true as human face has a complex structure. TO tackle
this problem, one more algorithm can be used called Thin
plate splines which can warp more complex shapes by fitting
a spline equation to it. Interesting part is in Thin plate spline
there are components of both, affine warp as well as warp
using spline equation.
Following steps are used to warp faces using Thin Plate
Splines method:

• A thin plate spline has the following form.

Fig. 6: Thin Plate spline model.

Where the first three terms are affine part of the transfor-
mation and rest is the spline formulation part. We have
a, ax, ay and Wi as the unknowns of this equation.

• To calculate the above unknowns we solve have to solve
the following equation:

Fig. 7: Equation to compute TPS parameters.

Here we have taken, v1, v2,....vn as the x,y landmarks
points of the destination face. The λI matrix is added

so that inverse of the corresponding matrix is always
computable and thus give a stable solution.
This equation has to be solved twice, once for x coor-
dinates and secondly for y coordinates. But, by proper
vectorization both x and y coordinates parameters are
computed in single pass only.
Note that U(r) has a log function in its equation and we
know log is not defined at 0. So, input U(0) = 0 to avoid
any errors in code.

(a)

Original image

(b)

Results after using Delaunay triangle warping method

(c)

Results after using Thin Plate Spline warping method

Fig. 8: Face warping and swapping

• Input the solution of Wi, a, ax, ay and az in the TPS
model first for individual x coordinates and then y co-
ordinates of the source face. We will get warped x and
warped y position of the destination face. Now, equate
intensity values at these warped positions equal to the
corresponding intensity values in source face.

• Apply mixed blur on the output to smoothen out the
output in case there are any missing pixel values.

D. Blending

After warping and swapping one face to another, the result
will not look natural because of color variations among the
two faces. To avoid this, we implement poission blending. We
have used opencv function of seamless clone to implement
blending operation. The results before and after blending can
be seen in Fig.

(a)

(b)

Fig. 9: Results before (a) and after (b) blending

E. Results Analysis

There are some observations regarding both the methods
used for warping and swapping the faces which are discussed
in below points:

• We observed that Facial landmarks using dlib library
works only if the faces are straight and facing the camera.
Because of this sometimes only one face is detected in
image.

• Because we are processing on every frame of the video,
the warping results are not very consistent and thus results
in video stability issues.

• Results of TPS are better than Delaunay triangles as the
spline shape is calculated at a particular point using all
other landmarks whereas in delaunay triangles triangle
warping doesn’t give best results because our face is not
exactly a plane in those individual triangles.

• There can be some distortions in the resultant swapped
image. So, we have used Mixed blur to even out those
distortions. Any other type of blur like Gaussian blur can
also be implemented.

II. PHASE 2 : DEEP LEARNING METHOD

A. Introduction

In this Phase, Off the shelf model from ”Towards fast,
accurate and stable 3D Dense face alignment” proposed by
Jianzhu Guo et al is implemented. Here we use novel regres-
sion framework named 3DDFA- V2 to obtain output as 3D
face fiducials, 3D depth and mesh. Further these full mesh are
used to swap the faces and blend as per the classical method
presented above.

B. 3DMM

3D Morphable model has been proved be more efficient
compared dense vertices regression as they countered the
problem of checkerboard artifacts due to deconvolution op-
erators and has beautiful resolution images. Here small set
of 3DMM parameters are regressed which have low dimen-
sionality and low redundancy. 3DMM parameters influence the
reconstructed 3D face differently, making regression tough and
need to dynamically re-weight each parameters according to
their importance in training. MobileNet is used as we regress
small no of parameters.

C. Pipeline

This architecture consists of 4 parts lightweight back-
bone like MobileNet for predicting 3DMM parameters, Meta
joint optimization technique (WPDC and VDC dynamically
chooses best parameters ahead and converges faster), the
landmark regression regularization(further elevating the facial
lankmarks predicting accuracy) and short video synthesis to
improve stability in 2D face alignment are used in training.

D. 3DMM Training

Here we define 3D face mesh, 3D face is reconstructed
and projected onto the image plane with scale Orthographical
projection.

V2d(p) = f ∗Pr ∗R ∗ (S +Aidαid +Aexpαid + t2d)

This is the Projection function generating 2D projection
of model. Parameters of 3DMM are factor, Transition matrix
containing Rotation and translation, pitch, yaw, roll. Entire
architecture is MobileNet and output is feed to Landmark
regression and meta joint optimization.

Fig. 10: Pipeline of 3DDFA-V2 Framework.

E. Meta-joint Optimization

Here we have 2 cost functions Vextex distance cost(VDC)
and Weighted Parameter distance cost(WPDC). VDC opti-
mizes by minimizing vertex distance between fitted 3D face
and ground truth. WPDC assigns different weights to pa-
rameter. In training process model looks ahead k-steps with
above cost functions then selects better one between cost
functions based on errors and converges faster than vanilla
joint optimization.

F. Landmark regression regularization

In 3D face reconstruction, the 2D sparse landmarks after
projecting are usually used as and extra regularization to
facilitate the parameter regression. Here we regress landmarks
using L2 loss function. We use 68 facial 2D landmarks to
regress.

G. 3D aided short video synthesis

In videos stability is critical issue. Here stability means
changing of the 3D reconstructed across adjacent frames
should be consistent with true face moving in fine grain level.
To counter this 3D aided short synthetic video in mini-batch is
generated. Common pattern like noise, motion blur, in-plane
rotation, out-plane face movement can be modelled. We apply
these transformation and short 3D video is generated and used
to improve video stability.

Fig. 11: Ouputs from facial landmarks.

Fig. 12: Mesh Output.

Fig. 13: 3D face reconstructed.

H. Conclusion

Author of the above research paper have implemented the
methodology described above. We used their code to generate
facial landmarks, mesh and 3d depth information for our data.
We tried implementing the face swap and blending the results
but couldn’t come up with reasonable results.

I. Test results

(a) (b)

original images

(c) (d)

Warped images c) Delaunay d) TPS

Fig. 14: Face warping and swapping

	Phase 1 : Traditional Computer vision pipelines
	Introduction
	Detecting face landmarks
	Face Warping and Swapping
	Using Delaunay Triangulation
	Using Thin Plate Splines

	Blending
	Results Analysis

	Phase 2 : Deep Learning Method
	Introduction
	3DMM
	Pipeline
	3DMM Training
	Meta-joint Optimization
	Landmark regression regularization
	3D aided short video synthesis
	Conclusion
	Test results

