
Project2: FaceSwap
RBE549

Karter Krueger
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, MA 01609

Email: kkrueger2@wpi.edu

Tript Sharma
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, MA, 01609

Email: tsharma@wpi.edu

I. PHASE 1: TRADITIONAL APPROACH

We use traditional computer vision algorithms to swap two
faces in a given image or video frame. We explored two
approaches to achieve this: (a) Delaunay Triangulation (b)
Thin Plate Splines.

To replace a face, we must first detect the faces using facial
fiducials which are distinctive feature points on the face. We
detect these using the opencv dlib library which detects 68
points on the face as seen in Fig. 1.

Fig. 1. DLib fiducial points plotted on two faces

In the next step, the two methods of triangulation and TPS
diverge down their respective paths.

A. Delaunay Triangulation

Using the fiducial points, we generate a Delaunay triangu-
lation, which is the dual of a Voronoi diagram. The Delaunay
method triangulates the points in a specific way such that
triangles are optimized to maximize the smallest angle within
each triangle to form a consistent triangulation, as seen in Fig.
2. We take the triangulation of FaceA and project it onto the
matching fiducials points of FaceB .

Once we have triangle meshes for both faces, we can warp
the section of face of each triangle to the corresponding facial
triangle in the opposite face. We perform the warp by inverse
warping of interpolated values to prevent there being undefined
sections of the face that would create black spots or artifacts.

Fig. 2. Delaunay triangulation of the facial fiducial points

We inverse warp a triangle by converting to Barycentric
coordinates, applying the inverse of the transformation matrix,
and converting back to (x,y) coordinates from Barycentric as
shown below.

For each triangle, we first convert all (x, y) coordinates in
the image to Barycentric coordinates [α, β, γ] using the three
corners a, b, c of triangle B, provided as their (x, y) values in
the below matrix.Ba,x Bb,x Bc,x

Ba,y Bb,y Bc,y

1 1 1

 αβ
γ

 =

xy
1

To solve for Barycentric coordinates, we invert the B matrix

and multiply by the (x, y) values in homogeneous form.αβ
γ

 = B−1
∆

xy
1

After converting all points to Barycentric coordinates, we

check which converted points lie inside the boundaries of the
triangle by checking that the following conditions are met:

α ∈ [0, 1], β ∈ [0, 1], γ ∈ [0, 1], (α+ β + γ) ∈ [0, 1].

We then convert the Barycentric coordinates of triangle B
to homogeneous coordinates of triangle A using the following.xA

yA
zA

 =

Aa,x Ab,x Ac,x

Aa,y Ab,y Ac,y

1 1 1

 αβ
γ

Homogeneous coordinates are then converted back to frame

coordinates.

xA = xA

zA
, yA = yA

zA

Lastly, scipy.interpolate.interp2d is used to in-
terpolate a value from intermediate Face A positions (xA, yA
to the new target pixel in Face B. The final result of the
Delaunay triangulation-based method is shown below in Fig.
I-A.

Fig. 3. Full face-swap operation using Delaunay triangulated method

Additional results with another set of faces is shown below.

Fig. 4. Dlib face points

B. Thin Plate Spline

The results from Subsection I-A show how triangulation can
miss some triangles from being warped. This partial swap can
be overcome by fitting a thin plate spline to smoothly map the

Fig. 5. Delaunay triangles

Fig. 6. Full face-swap operation using Delaunay triangulated method

points of one face to the other face. We map feature points
in FaceB to corresponding points in FaceA to perform an
inverse warping. To do this, we first calculate the coefficients
necessary for the non-linear/spline part along with the affine
part. This involves using a Radial Basis Function (RBF) to
determine the ”energy” required to bend between two points
separated by a distance r as follows

U(r) = r2 ∗ log(r2)

The weights and affine variables are solved a system as
follows.

w1

w2

...
wp

ax
ay
a1

= (

[
K P
PT 0

]
+ λI(p+ 3, p+ 3))−1

v1
v2
...
vp
0
0
0

Here K gives us the relationship between all the features

points in FaceA while Pi = (xi, yi, 1). Once we have the

weights and affine parameters, we use them in the f(x, y)
function to get the new points for FaceA as seen in the
equation.

f(x, y) = a1+x∗ax+y∗ay+
∑p

i=1 wiU (||(xi, yi)− (x, y)||)

where, (x, y) are points contained within Face B, deter-
mined by a convex hull that surrounds all feature points
of Face B. These points are used to swap the two faces
where the color at each location is determined using
scipy.interpolate.interp2d for a smooth image.

The final result of the TPS-based face-swap method is
shown in Fig. 7.

Fig. 7. TPS-based full face-swap of two faces

C. Blending

We perform blending using the Poisson image blending
method, which is implemented in the seamlessClone
OpenCV function. We blend using the original image, the
replaced face, and a mask of the face region. The blending
result is shown in Fig. 8.

Fig. 8. Blending result of 2 faces with TPS

D. Motion Filtering

We filtered the motion with a low-pass filter method that
performed a rolling average of locations for the 68 points

between frames. (this was not used in the video due to lower
framerate for smaller filesize)

E. Failures

You will notice the triangulation sometimes fails to match
in the same way which causes distortion. We believe a better
filtering method, such as a Kalman Filter would help this issue.

II. DEEP LEARNING APPROACH

Phase 2 of the project is tasked with swapping the faces
using a deep network to detect facial features. We used an
existing implementation of the network called ”Face Align-
ment in Full Pose Range: A 3D Total Solution.” The network
outputs 3d facial fiducials, a 3d facial mesh, and the normal
vectors for each point on the mesh.

A. Implementation

Our implemented solution uses the facial fiducials from the
network in a similar way as the features from Phase1, which
describe certain parts of the face. We then feed these points
into the TPS method of Phase1 to perform the full face swap.
Results of the PRNet-based face swap are shown below in Fig.
10.

Fig. 9. Feature Points from PRNet

Fig. 10. Face swap using PRNet to generate fiducial points for TPS-based
swap

We also had other ideas to further utilize the mesh outputs
of the deep network.

B. Extra Idea 1

The first idea was to perform inverse ray tracing to first find
the points of the 3d mesh that are visible from the camera
perspective by back-projecting the rays from the 3D points
to the camera center to find the intersecting pixel coordinate.
Using the masks generated by the two faces on the camera
plane, we then find the mask of the overlapping regions of
visible face to determine which portions of the face meshes
can be swapped (parts that are both visible by the camera).
We then find the fiducial points along the edges of the masked
meshes that intersect with a curve drawn between the facial
fiducials from the network. An illustration of this idea is shown
in Fig. 11.

Fig. 11. Using inverse ray-tracing to find overlapping face mesh points

C. Extra Idea 2

Align the faces using the normal-vector masks, by aligning
a distinguishable features of all faces - the nose. The nose
has a unique shape of normal vectors pointing in almost all
directions, and as it is the furthest forward features of a facial
mask. The nose vectors can then be averaged on both faces to
align their poses and then generate a mesh grid across the rest
of the face centered at the nose that spans to the edges. The
mesh grids of the two faces can be sparse of only 100 points,
then those points can be passed into TPS as normal for a face
swap operation.

