
RBE549 Project2 FaceSwap
Haoying Zhou

Department of Robotics Engineering
Worcester Polytechnic Institute

Worcester, MA, 01609
Email: hzhou6@wpi.edu

Zhentian Qian
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, MA, 01609
Email: zqian@wpi.edu

I. PHASE 1: TRADITIONAL APPROACH

A. Facial Landmarks detection

The facial landmarks are detected using the dlib library. We
first use a pretrained CNN based face detector offered by dlib.
The CNN model is much more accurate than the HOG based
model, but takes much more computational power to run.

64 facial landmarks are then detected in the bounding box
detected by the face detector, as shown in Figure 1 for data 1
and Figure 2 for data 2.

(a) face 1 landmarks (b) face 2 landmarks

Fig. 1: Output of dlib for facial landmarks detection for data
1. Blue landmarks are overlayed on the input image.

Fig. 2: Output of dlib for facial landmarks detection for data
2. Blue landmarks are overlayed on the input image.

B. Face Warping using Triangulation and Thin Plate Spline

Delaunay Triangulation are performed on the detected face
regions, with the 68 facial landmarks as the vertices, as shown
in Figure 3 for data 1 and Figure 4 for data 2.

(a) face 1 (Zhentian Qian) triangula-
tion

(b) face 2 (Hyun Bin) triangulation

Fig. 3: Triangulation on two faces we want to swap for data
1.

(a) face 1 (Haoying Zhou) triangulation(b) face 2 (Zhentian Qian) triangula-
tion

Fig. 4: Triangulation on two faces we want to swap for data
2.

The images warped using Triangulation and Thin Plate
Splines are shown in Figure 5 for data 1 and Figure 6 for
data 2. Note that for data2, we are not swapping the two faces
in each frame. Rather, there are reference faces for face 1 and
face 2, taken from one frame in the video. All warping is
performed with respect to the reference faces.

Comparing the warped images using Triangulation and Thin
Plate Splines. We can see that, for triangulation, there are
some black artifacts in the warped images (note the black

mailto:hzhou6@wpi.edu
mailto:zqian@wpi.edu


region between the lips in the middle row of Figure 5 and
Figure 6). For Thin Plate Splines, no such artifacts are spotted.
This is because the affine transformation calculated based on
triangulation would fail if the three vertices constituting the
triangle lie closely on a line, leaving a black region in the
warped image. As for Thin Plate Splines, since all facial
landmarks are utilized in this process, and also regularization
term is added, the calculation is always successfully and no
black artifacts are rendered.

(a) face 1 (Zhentian Qian) (b) face 2 (Hyun Bin)

(c) face 1 warped to face 2 using
Triangulation

(d) face 2 warped to face 1 using
Triangulation

(e) face 1 warped to face 2 using TPS (f) face 2 warped to face 1 using TPS

Fig. 5: Top row: Original images, Middle row (left to right):
face 1 warped to face 2 and face 2 warped to face 1 using
triangulation, Bottom row (left to right): face 1 warped to face
2 and face 2 warped to face 1 using Thin Plate Splines.

(a) face 1 (Haoying Zhou) (b) face 2 (Zhentian Qian)

(c) face 1 warped to face 2
using Triangulation

(d) face 2 warped to face 1 using
Triangulation

(e) face 1 warped to face 2
using TPS

(f) face 2 warped to face 1 using
TPS

Fig. 6: Top row: Original images, Middle row (left to right):
face 1 warped to face 2 and face 2 warped to face 1 using
triangulation, Bottom row (left to right): face 1 warped to face
2 and face 2 warped to face 1 using Thin Plate Splines.

C. Replace Face

Sample outputs of face replacement for data 1 and data 2
are shown in Figure 7 and Figure 8. Notice the difference in
color and edges. The output is not a seamless blend.



Fig. 7: Output of sample face replacement for data 1. Notice
the difference in color and edges. The output is not a seamless
blend.

Fig. 8: Output of sample face replacement for data 2. Notice
the difference in color and edges. The output is not a seamless
blend.

D. Blending

We use the OpenCV seamless clone function to blend the
warped face onto the target face, which is an implemetation of
the possion blending [1]. The blending outputs for data 1 and
data 2 using Triangulation and Thin Plate Splines are shown
in Figure 9, Figure 10, Figure 11 and Figure 12.

Fig. 9: Output of sample face replacement for data 1 after
blending using Triangulation.

Fig. 10: Output of sample face replacement for data 1 after
blending using Thin Plate Splines.

Fig. 11: Output of sample face replacement for data 2 after
blending using Triangulation.

Fig. 12: Output of sample face replacement for data 2 after
blending using Thin Plate Splines.

E. Motion Filtering

To reduce jittering of face landmarks, we implement
a custom motion filter. This code is largely inspired
by this project: https://github.com/mayankvik2/
Stabilized-Facial-Landmark-Detection-in-Real-Time-Video.
The main idea is to predict the current facial landmarks
position using using the iterative Lucas-Kanade optical flow
method with pyramids [2], and then treat the detected facial

https://github.com/mayankvik2/Stabilized-Facial-Landmark-Detection-in-Real-Time-Video
https://github.com/mayankvik2/Stabilized-Facial-Landmark-Detection-in-Real-Time-Video


landmarks on the current frame using dlib as measurement
and correct the prediction. The details of the motion filter can
be found in algorithm 1.

Algorithm 1: Motion filter
Input: Previous filtered facial landmarks ft−1, previous

frame It−1, current frame It, current facial landmarks
detection mt, previous facial landmarks detection mt−1.

Output: Filtered facial landmarks ft;
Predict the position of ft−1 on the current frame It using
optical flow. The prediction is termed pt;
Calculate eye distance ed;
σ = ed2/400;
d = ∥mt −mt−1∥;
α = exp

{
−d2/σ

}
;

ft = αpt + (1− α)mt;

F. Failure Cases

One failure case is presented in Figure 13. We can see
that the warped face is distorted. This is because the facial
landmarks position is inaccurate on the jawline.

Fig. 13: Failure case

II. PHASE 2: DEEP LEARNING APPROACH

A. Facial Landmarks detection

Based on the problem description[3] and corresponding
papers[4, 5], modifying the reference code with pre-trained
model[6], we manage to find out the 68 points landmark for
faces, shown as Figure 14.

Fig. 14: Face landmark detected by deep learning method

Moreover, we can also obtain some other features such as
the depth image estimation, projected normalized coordinate
code (PNCC), pose adaptive feature(PAF) and pose estimation
of the detected face, shown in Figure 15.

(a) depth image estimation (b) projected normalized coordinate
code

(c) pose adaptive feature (d) pose estimation

Fig. 15: Features obtained from image using deep learning
method

Meanwhile, we can reconstruct the 3D mesh of the face
with its texture shown in Figure 16

(a) 3D mesh (b) 3D mesh with texture

Fig. 16: 3D mesh of the face with its texture



Furthermore, the deep learning method can also detect all
faces if there are multiple faces in the image. An example is
shown in Figure 17.

Fig. 17: Face landmark detected by deep learning method

Corresponding features are shown in Figure 18

(a) depth image estimation (b) projected normalized coordinate
code

(c) pose adaptive feature object 1 (d) pose adaptive feature object 2

(e) pose estimation

Fig. 18: Multiple face features obtained from image using deep
learning method

B. Replacing face

Taking the advantage of the dense vertices predictions, we
are able to obtain the 3D coordinates of the faces as well as
its depth and color information, therefore, we can replace the
vertices and their color information to swap faces. Using the
same pair of faces in Figure 1, we can obtain the vertices after
swapping shown in Figure 19.

(a) object1 with object2 face (b) object2 with object1 face

Fig. 19: vertices after swapping faces

Knowing the 3D coordinates, using rendering algorithms or
parallel projection, we are able to find the corresponding 2D
pixel coordinate, therefore, replace the local RGB color values
to swap the faces. Nevertheless, there are some issues such as
non-convex area, distorted area and color difference. We are
using cv2.fillConvexPoly(), cv2.inpaint() and
Poisson blending to fix the problems.

Eventually, the results are shown in Figure 20 and Figure 21.

Fig. 20: Face swapping for Data1



Fig. 21: Face swapping for Data2

In addition, the incorrect correspondence may lead to some
mismatching. Also, the incorrect pose correspondence may let
the images look torn.

In conclusion, deep learning are likely to achieve a better
result compared to traditional approach.

REFERENCES

[1] Patrick Pérez, Michel Gangnet, and Andrew Blake.
“Poisson image editing”. In: ACM SIGGRAPH 2003
Papers. 2003, pp. 313–318.

[2] Jean-Yves Bouguet et al. “Pyramidal implementation of
the affine lucas kanade feature tracker description of the
algorithm”. In: Intel corporation 5.1-10 (2001), p. 4.

[3] Nitin J. Sanket, Lening Li, and Gejji Vaishnavi Vivek.
P2 Guidence. URL: https : / / rbe549 .github. io / fall2022/
proj/p2/.

[4] Xiangyu Zhu et al. “Face alignment in full pose range:
A 3d total solution”. In: IEEE transactions on pattern
analysis and machine intelligence (2017).

[5] Jianzhu Guo et al. “Towards Fast, Accurate and Stable
3D Dense Face Alignment”. In: Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV). 2020.

[6] Jianzhu Guo, Xiangyu Zhu, and Zhen Lei. 3DDFA. https:
//github.com/cleardusk/3DDFA. 2018.

https://rbe549.github.io/fall2022/proj/p2/
https://rbe549.github.io/fall2022/proj/p2/
https://github.com/cleardusk/3DDFA
https://github.com/cleardusk/3DDFA

	Phase 1: Traditional Approach
	Facial Landmarks detection
	Face Warping using Triangulation and Thin Plate Spline
	Replace Face
	Blending
	Motion Filtering
	Failure Cases

	Phase 2: Deep Learning Approach
	Facial Landmarks detection
	Replacing face


