RBE/CS549 - Computer Vision
Project 2 - FaceSwap

Anagha Dangle - Mihir Kulkarni
ardangle @wpi.edu - mmkulkarni @wpi.edu

Using 1 late day

Abstract—The main task of this project is to perform face
swapping which involves replacing the face in a video with a
different face from an image and swapping the 2 faces in the
same video. This Project is divided into 2 phases. Phase 1 explores
face swapping using the traditional approach. Here, we detect the
facial landmarks using the dlib library, perform face warping,
face replacement, and finally blending. Phase 2 involves using
an off-the-shelf deep learning model to detect the facial features
and perform face replacement in the same way as Phase 1.

I. PHASE-I: TRADITIONAL APPROACH

This approach is divided into the following 4 steps:

o Facial Landmark detection of both images using dlib
library.

o Face Warping using Delaunay Triangulation or Thin Plate
Spline (TPS). We will see both these approaches in detail
later.

o Creating a mask of the destination face.

o Replacing the destination face with the source face.

Let’s have a look at these steps in detail.

A. Facial Landmark Detection

The facial features or landmarks of a face are detected
using the dlib library. We use the get_frontal_face_detector()
function for the detector and the shape_predictor() function
for the predictor. The detector outputs the bounding box of
the face in the image, while the predictor gives the 68 points
(coordinates in the image) that correspond to the specific
facial features. The pre-trained facial landmark detector (.dat
file) is used to predict these 68 points. An advantage of using
dlib is that it can detect multiple faces in the image. The
detector will return as many rectangular bounding boxes as the
number of faces in the image. This is particularly important
when you want to swap 2 faces in the same image.

Fig. 1: Features of Kobe

Fig. 2: Facial features of Bradley Cooper

Fig. 3: Facial features of Mihir



Fig. 4: Facial features of Anagha

Fig. 5: Facial features of Jim

B. Face Warping

The 2 approaches here are as follows:

1) Delaunay Triangulation: Now that we have the 68
feature points and the bounding rectangle, we perform the
Delaunay triangulation of the image. Using the OpenCV
function Subdiv2D(), we get the Delaunay triangles in the
form of x and y coordinates of the vertices of each triangle.
We perform this triangulation for both, the source image and
the destination image giving us the vertices coordinates of
all triangles in both images. We only select the triangles that
belong to the face markers. The triangles correspond because
the indices are taken to be the same from both images. Due to
this the number of triangles always remains the same. We also
tried using bounding boxes to keep the number of triangles the

same however it did not seem to work properly.

The next task is to warp the source image according to the
shape of the destination image so that the final image doesn’t
look out of place. For this, we first take the bounding rectangle
of each triangle in the image. Then we calculate the shift
between the x and y coordinates of the triangle with the x and
y coordinates of its corresponding bounding rectangle. Using
this shift we affine transform every triangle in the source image
to get the warped image.

Fig. 7: Delaunay Triangulation of Bradley



Fig. 8: Delaunay Triangulation of Jim

Fig. 9: Delaunay Triangulation of Mihir

Fig. 10: Delaunay Triangulation of Kobe

2) Thin Plate Spline (TPS) Warping: Thin Plate Spline can
model arbitrarily complex shapes like our faces. So instead
of using affine transformation on individual triangles, like in
Delaunay Triangulation, we use TPS to transform the entire
face in a better and uniform manner. We first calculate the L
matrix. For that, we need to calculate K, P, and PT. For this,
we need the control and source points. We get a 68x68 matrix
of K which is calculated using R and euclidean distance is
used for the measure. We use the map coordinates function to
interpolate the source points with the calculated TPS output.
We have linked a few resources which helped us understand
TPS better at the bottom of the page.

C. Mask creation

Now that we have the warped source image, we have to
create a mask of the face in the destination image which
we want to replace. With the OpenCV function convexHull()
and fillConvexPoly(), we generate a mask of the face to be
replaced, using the facial landmarks of the destination face.
The convexHull function gives an outline of a face in an image
while the fillConvex Poly function fills the area bounded by
the outline provided by the convex hull function by color of
our choice.

D. Replacing/Swapping faces and Blending

We have the warped source image and the mask of the
destination face. Now in order to replace the destination face,
first we multiply the warped source image with the mask so
as to place the source image at the exact desired location
of the destination face. Then, we use the OpenCV function
seamlessClone() which combines the warped image and the
destination image to produce a single blended image. We
also use feather blending to have a better output image. We
observed the output to be the same and not much different in
both cases.



E. Original Images

Fig. 11: Original image of Kobe . .. . -
Fig. 13: Original image of Mihir

Fig. 12: Original image of Anagha Fig. 14: Original image of Jim



L Y

Fig. 15: Original image of Bradley

Fig. 17: Original random image

Fig. 18: Original image of Mihir and Anagha

Fig. 16: Original image of Deepika



F. Results - Replacement

Fig. 19: Delaunay Output of Kobe Jim

Delaunay triangulation Output

Fig. 22: TPS output of Anagha and Mihir

Fig. 20: Delaunay Output of Anagha & Deepika

Delaunay triangulation Output
- ~

Fig. 21: Delaunay Output of Jim Bradley Fig. 23: TPS output of Jim Bradley



Fig. 24: TPS output of Kobe Jim

Fig. 26: TPS output of Mihir Jim

Fig. 25: TPS output of Mihir Anagha



G. Results - Swapping

Delaunay triangulation Output

Fig. 29: TPS output of a random video

Fig. 27: Delaunay Output of random image

Delaunay triangulation Output

Fig. 30: Face swap using TPS of Anagha Mihir

Fig. 28: Face swap using Delaunay Triangulation of Anagha
Mihir



H. Observations

The two major difficulties we observed were the number of
triangles generated differently in triangulation and the speed
of the video. We tried reducing the complexities and repetitive
loops to reduce the overhead of the functions. A major change
in the speed was observed. For the triangles issue, with
indexing, the problem seemed to be solved. The faces are not
warped efficiently as in some cases the prediction from dlib is
disoriented. Thin Plate Spline seems to give better outputs,
however there is not much difference in terms of visual
appearance. When the 2 faces are of different complexion,
the blend seems improper and it just appears to be one color
on top of the other. A probable solution to this problem can
be averaging the pixel intensities of the source and destination
face areas (given by ConvexHull()) when blending the images.

We have compared the outputs from all three different models
using face similarity. we have also compared the results with

some already deployed models available online.
II. PHASE-II - MOBILENET/3DDFA

In this Phase, we use an off-the-shelf model that uses the
MobileNet architecture to give a full 3D mesh of the face in
am image. The model also gives the 68 facial feature points
similar to the dlib library. We have only used these 68 facial
feature points and not the entire mesh and performed face
swapping as in Phase 1. These 68 points are stored in a .txt
file when we run their code as given. Thus, we use the text
files generated for both the faces and extract the coordinates
from them. These coordinates are then passed on to the TPS
algorithm which works in the same way as before.

ix=os6, y=s

Fig. 31: Phase 2 output of Anagha Deepika

ix=392. y=29) ~ 207

Fig. 32: Phase 2 output using TPS of Mihir Anagha

Fig. 33: Phase 2 output using TPS of Mihir Anagha



Fig. 34: Phase 2 output using TPS of Mihir Jim

III. CONCLUSION

Looking at all the results, the TPS output seems to be better
than the delaunay. In some outputs, one triangle does not
seem to be generated in the triangulation because of which the
delaunay warping underperforms a little as compared to TPS.
But, in certain images, like the Delaunay Output of Anagha
& Deepika, the eyebrows appear to match properly which is
not the case with TPS as well with Phase 2 outputs where the
eyebrows are one below the other.

In Phase 2, as we are using the .txt file containing the facial
feature coordinates, we were not able to use this algorithm for
videos which requires generation of the 68 facial features for
every frame. Thus, for us Phase 2 has been limited to just
images, for which, it works quite well. We are also not using
the 3D mesh given by the model to warp the image.

IV. REFERENCES

https://khanhha.github.io/posts/Thin-Plate-Splines-Warping/
https://pyimagesearch.com/2017/04/03/facial-landmarks-dlib-
opencv-python/



