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Abstract—In this project, we presented two different ways of
stitching two or more images to create a seamless panorama
image. In this work, we considered images with repeated local
features. One of the two ways is classical computer vision method
and the other one is deep-learning method.

I. PHASE 1: TRADITIONAL APPROACH

A traditional method that can be used for panorama stitching
is shown in figure 1.
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Fig. 1. Overview of panorama stitching using traditional method
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In this approach, initially the corners are detected for each
image that needs to be stitched together. Once the corners are
detected, adaptive non-maximal suppression method is method
is used to find local maxima of corners. Features are extracted
from each image and then matched.Matched features clubbed
with random sample consensus, and the outliers are removed.
Homography is estimated and then the images are blended
together. Three sample images and their expected panorama
is shown in figure 2.
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Fig. 2. First three images: Input to the panorama stitching algorithm, last
image: output of the panorama stitching algorithm

A. Corner Detection

To detect corners in the given image, we used Har-
ris Corners method. This functionality is achieved from
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cv2.cornerHarris method.We used a threshold of 0.01 , block-
size of 2 and Sobel size of 3. The outputs for different images
are given by figures 3, 4, and 5.

But the corners detected here are too dense . If these corners
are used directly for the feature matching , because of too
many corners , computation can be expensive. These cor-
ners can be reduced using adaptive non-maximal suppression
method.



Fig. 5. Detected corners using Harris Corners method for input 3

B. Adaptive Non-Maximal Suppression (ANMS)

Main motive of this step is to reduce the corners such a
way that they are equally distributed throughout the image.
This method can make sure that the final stitched image will
not have weird warping.

In a real image, a corner is never perfectly sharp, each
corner might get a lot of hits out of the N strong corners
- we want to choose only the N best corners after ANMS.The
algorithm for implementing ANMS is given by figure 6.

Input : Corner score Image (Cjy, obtained using cornermetric), Njey (Number of
best corners needed)
Output: (z;,y;) fori =1: Nyey
Find all local maxima using imregionalmax on Ci,;
Find (z,y) co-ordinates of all local maxima;
((z,y) for a local maxima are inverted row and column indices i.e., If we have local
maxima at [7, j] then z = j and y =i for that local maxima);
Initialize r; = 00 for i = [1: Nyrong]
for i = [1: Nyyrong| do
for j = (1 Nruny] do
i (Cuns(45:;) > Cun 7)) then
| ED= (zj—i)* + (yj —v)*

end
if ED < r; then
| r=ED
end

end

end

Sort 7; in descending order and pick top Nyes points
Fig. 6. Algorithm to implement ANMS

Output of ANMS for each input images is shown by figures
7,8, and 9.

C. Feature Descriptor

In this step, each feature corner also called as feature point
is converted into feature vector. For this conversion, we Took
a patch of size 40x40 centered around the key-point/feature
point , and applied Gaussian blur. We used cv2.GaussianBlur
command with default parameters. After that, blurred output is
sub-sampled to 8x8. This is reshaped to obtain a 64x1 vector.
This vector is standardized to have zero mean and variance of

Fig. 9. ANMS output for input 3



1.Here, Standardization helps to remove bias and to achieve
some amount of illumination invariance.

D. Feature Matching

Each previously encoded 64x1 feature vectors from each
image is matched using feature correspondence. This can be
computed by the following method: 1)Pick a point in image
1, compute sum of square differences between all points in
image 2. 2) Take the ratio of best match (lowest distance) to
the second best match (second lowest distance) and if this is
below some ratio keep the matched pair or reject it. 3) Repeat
this for all points in image 1. 4)You will be left with only
the confident feature correspondences and these points will
be used to estimate the transformation between the 2 images,
also called as Homography. Output of feature matching for
each pair is shown by figures 10, 11 , and 12.
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Fig. 10. Output of Feature Matching for input 1 and 2
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Fig. 12. Output of Feature Matching for input 3 and 1

In this step , we can clearly observe the wrong matches. This
can be solved by using random samples consensus method,
also known as RANSAC.

E. RANSAC for outlier rejection and to estimate Robust
Homography
We now have matched all the features correspondences but
not all matches are right. To remove incorrect matches, we
used a robust method called Random Sample Concensus or
RANSAC to compute homography.
The RANSAC steps are:
1) Select four feature pairs (at random) from both images
2) Compute homography H between the previously picked
point pairs
3) Compute inliers where SSD is lower than some threshold
4) Repeat the last three steps until you have exhausted Nmax
number of iterations (specified by user) or you found
more than some percentage of inliers
5) Keep largest set of inliers
The outputs after eliminating the outliers are
figures 13, 14 , and ??

shown by

Fig. 13. Feature matches after outliers have been removed using RANSAC
for input 1 and 2

Fig. 14. Feature matches after outliers have been removed using RANSAC
for input 2 and 3

F. Blending Imges

Panorama can be produced by overlaying the pairwise
aligned images to create the final output image. For this we
have used pairs of given input images. Initially input image 1
and 2 are stitched together , later input images 1 and 3. Finally
the result of these two are stitched together. The results for
these are shown by figures 16 , 17 , and 18.



Fig. 15. Feature matches after outliers have been removed using RANSAC
for input 3 and 1
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Fig. 16. Stitched output for input 1 and 2
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Fig. 18. Final Panorama

II. PHASE II - DEEP LEARNING APPROACH

In this phase, we have implemented the deep learning
approach to perform homography estimation between two
images, one being the original image and the second being
the warped duplicate of the original image. Also, we have
build two type of network, namely, supervised as well as
unsupervised networks.

A. Data Generation

The primary source of data is taken from the MSCOCO
dataset consisting of color images. Due to the huge size of the
dataset, a small sample has been taken from it and it has been
divided into Train, Validation and Test Dataset. The Train,
Validation and Test datasets consist of 5000, 1000 and 1000
images, respectively.

The original images are provided in a zip-file. The images
are extracted from the zip-file, converted to gray-scale and then
stored into a folder named TrainOrglmgs. Then a small patch
of size 64 x 64 pixels is considered at random from the gray-
scale image and a perturbation of value (p = 16) is applied.
The original patch and the resultant patch are stacked together
and stored into another folder named Train. The difference
between the original corners and the perturbed corners is
calculated as H4Pt. This values is then stored as Label for
our data. Similarly, the process is repeated for Validation and
Test dataset.

Fig. 20. Warping of image from B to A



Fig. 21. Sample Training patches; Left: Patch-A, Right: Patch-B

Fig. 22. Sample Validation Image (Blue: Patch-A; Red: Patch-B)
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Fig. 23. Warping of image from B to A

Fig. 24. Sample Validation patches; Left: Patch-A, Right: Patch-B

B. Network Architecture

1) Supervised Learning: The base homography architecture
has been provided as shown by figure 25. The input image size
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Fig. 25. Supervised Homography Architecture

considered in our scenario is a 64x64 patch. The two patches
A and B are stacked one behind another and are stored as

numpy arrays. The label for the particular patch pair has been
stored in a text document as described in the Data preparation
Step. The overall flow of the code can be represented by the
diagram in Figure 26. The output of the architecture is an
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Fig. 26. Supervised Homography Architecture Diagram

1x8 matrix which represents the perturbation (H4Pt) in each
corner of the patch A corresponding to the patch B. The model
trains to learn the Homography between Patch A and Patch B
and displays the H4Pt values as the output. The GenerateBatch
function was divided into two function: SupGenerateBatch and
UnSupGenerateBatch, to satisfy accordingly the two networks.
A random sample function has been implemented in the
GenerateBatch function to guarantee the randomness of data
during training and to avoid order bias during training. In the
Network file, two different classes have been created, namely
SupHomographyModel and UnSupHomographyModel to cater
the needs to two different architectures. Based on the input of
the model-type while running the code, the appropriate model
is initiated and the the respective training process is carried
over in the training code. In case of the network optimizer
both SGD as well as AdamW has been used to train the data.
The Figure 27 and Figure 28 shows the optimizer used and
Model architecture, respectively.

NVIDIA GeForce RTX 3870 Laptop GPU
Number of Epochs Training will run for 1@
Factor of reduction in training data is 1.0
Mini Batch Size 160
Number of Training Images 5000
Optimizer Information:
<bound method Optimizer.state dict of AdamW (
Parameter Group ©
amsgrad: False
betas: (8.9, ©.999)
capturable: False
eps: le-08
foreach: None
1r: le-06
maximize: False
weight decay: 0.01
)=

Fig. 27. Details of data split and optimizer used in the Supervised learning

2) Unsupervised Learning: The base homography architec-
ture has been provided as shown by figure 29.

The initial CNN network of the Unsupervised model is
similar to the supervised learning part. In addition we have two
more components called the Direct Linear Transform (DLT)
and Spatial Transformer Network (STN). The flow of output
in the unsupervised model is as show in Figure 30



Layer (type:depth-idx) Param #

—SupNet: 1-1

Lsequential: 2-1

Lconv2d: 3-1

L BatchNorm2d: 3-2

LRelU: 3-3

L Dropout: 3-4

—Sequential: 2-2
Lconv2d: 3-5
LBatchNorm2d: 3-6
LRelU: 3-7
L MaxPool2d: 3-8
L Dropout: 3-9

—Sequential: 2-3
Lconvad: 3-10
LBatchNorm2d: 3-11
LRelU: 3-12
LDropout: 3-13

'—Sequential: 2-4
LConv2d: 3-14
LBatchNorm2d: 3-15
LRelU: 3-16
LMaxPool2d: 3-17
L Dropout: 3-18

—Sequential: 2-5
Llinear: 3-19
LRelU: 3-20
LDropout: 3-21

'—Sequential: 2-6
Llinear: 3-22
LRelLU: 3-23
L Dropout: 3-24

—Sequential: 2-7

| LLinear: 3-25

1,216
128

36,928
128

73,856
256

147,584
256

134,221,824

8,390,656

16,392

Total params: 142,889,224
Trainable params: 142,889,224
Non-trainable params: @

Fig. 28. Summary of the Network Architecture used in the Supervised
learning
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Fig. 29. Unsupervised Homography Architecture Diagram

3) Unsupervised Learning: The base homography architec-
ture has been provided as shown by figure 29.
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Fig. 30. Flow of Unsupervised Network model

4) Direct Linear Transform (DLT): DLT takes in the input
from H4Pt obtained from the output of the initial CNN
network and the Corner co-ordinates of Patch A. Using this
information we calculate the predicted corners of Patch-B.
This Patch-A corner and Patch-B corner information is further
used to evaluate the Homography matrix of size (3x3). In
the paper, the authors have discussed a method to calculate
the equation.In our implementation we have considered each
element in a batch tensor by tensor and have evaluated the
Ai matrix accordingly. From that we have obtained using the
equation Ai * h = bi, we have calculated the value of h which
is a 1x8 matrix.

5) Spatial Transformer Network (STN): The STN uses the
output of the DLT, the 3x3 homography matrix and the patch
A to predict the patch B. Once warped, the photo-metric loss
is computed by comparing the predicted patch and the actual
patch.

C. Results

The supervised learning model has been trained and tested
and the loss in pixel are as shown in the table below:

Val-EPE | Test-EPE
32.25 px | 90.96 px

Model-name
Sup+Static

It can be observed that the training loss is less but the
testing loss is very high. This might be due to either overfit or
underfitting of the model with the training data. The figure 31
show the Loss-vs-Iteration plot for the validation data during
the training process.
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Fig. 31. Validation Loss-vs-Iteration plot

Fig. 32. The following is the visualization of the output of the Supervised
Network: Blue - Patch A; Red - Patch B and Yellow - Predicted Patch B



The model is run on the a few testing set and the output
of the model along with the ground truth are visualized as
shown in the Figure 32. We can observe that the network
has predicted the patch B co-ordinates very different from
the ground truth. This shows that the network has not learnt
properly and might be over-fitting the training data leading to
huge testing loss.
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