
RBE549 Project1 My AutoPano
Haoying Zhou

Department of Robotics Engineering
Worcester Polytechnic Institute

Worcester, MA, 01609
Email: hzhou6@wpi.edu

Zhentian Qian
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, MA, 01609
Email: zqian@wpi.edu

I. PHASE 1: TRADITIONAL APPROACH

A. Corner Detection

Let the 2-D grayscale image denoted by I . Consider taking
an image patch (x, y) ∈ W (window) and shifting it by (u, v).
The sum of squared differences (SSD) between these two
patches, denoted E(u, v), is given by:

E(u, v) =
∑

(x,y)∈W

(
I(x, y)︸ ︷︷ ︸
intensity

− I(x+ u, y + v)︸ ︷︷ ︸
shifted intensity

)2

(1)

I(x+u, y+v) can be approximated by a Taylor expansion.
Let Ix and Iy be the partial derivatives of I , such that

I(x+ u, y + v) ≈ I(x, y) + Ix(x, y)u+ Iy(x, y)v (2)

This produces the approximation

E(u, v) ≈
∑

(x,y)∈W

(Ix(x, y)u+ Iy(x, y)v)
2
, (3)

which can be written in matrix form:

E(u, v) ≈
[
u v

]
M

[
u
v

]
, (4)

where M is the structure tensor,

M =
∑

(x,y)∈W

[
I2x IxIy
IxIy I2y

]
(5)

Then the Harris [1] response, which determines if a window
can contain a corner or not, is calculated as:

R = λ1λ2 − k(λ1 + λ2)
2 = det(M)− k tr(M)2 (6)

where k is an empirically determined constant k ∈
[0.04, 0.06]. Large Harris response R indicate the presence
of a corner.

The output for the corner dection is shown in Figure 1. k
is set to be 0.04. The threshold for R is set to be 110.

Fig. 1: Output of Harris corner detection

B. Adaptive Non-Maximal Suppression

The algorithm for implementing ANMS is given in algo-
rithm 1. We use the Harris response score R as the corner score
Image Cimg . A custom function is implemented to extract the
local maxima. The output of ANMS is visualized in Figure 2.
Observe that the output of ANMS is evenly distributed strong
corners.

Fig. 2: Output of ANMS algorithm

mailto:hzhou6@wpi.edu
mailto:zqian@wpi.edu

Algorithm 1: Adaptive Non-Maximal Suppression
Input : Corner score Image (Cimg obtained using

cornermetric), Nbest (Number of best
corners needed)

Output: (xi, yi) for i = 1 : Nbest

Find all local maxima using on Cimg;
Find (x, y) co-ordinates of all local maxima;
Initialize ri = ∞ for i = [1 : Nstrong];
for i = [1 : Nstrong] do

for j = [1 : Nstrong] do
if Cimg[yj , xj] > Cimg[yi,xi] then

ED = (xj − xi)
2 + (yj − yi)

2

end
if ED < ri then

ri = ED
end

end
end
Sort ri in descending order and pick top Nbest points.

C. Feature Descriptor

Gaussian blur is applied to the entire image, as shown in
Figure 3. We then take a patch of size 41×41 centered around
the feature point. The blurred output is sub-sampled to 8×8
and then reshape to obtain a 64×1 vector. The vector is then
standardized by subtracting the mean of the vector and diving
by the standard deviation of the vector.

Fig. 3: Gaussian blurred image

D. Feature Matching

Please see Figure 4 for the matched feature between image
2 and 3 in set 1. Observe that there are some wrong matches.

Fig. 4: Output of Feature Matching. Observe the wrong
matches.

E. RANSAC for outlier rejection and to estimate Robust
Homography

To remove incorrect matches, The homography is computed
using Random Sample Concensus algorithm described in
algorithm 2.

Algorithm 2: RANSAC

while iterations < Nmax do
Select four feature pairs (at random), pi from
image 1, p′i from image 2;

Compute homography H between the previously
picked point pairs;

Compute inliers where SSD(p′i, Hpi) < τ , where
τ is some user chosen threshold and SSD is sum
of square difference function;

increment iterations;
end
Keep largest set of inliers;
Re-compute least-squares Ĥ estimate on all of the

inliers.

The output of feature matches after all outliers have been
removed is shown in Figure 5.

Fig. 5: Feature matches after outliers have been removed using
RANSAC.

We implement the Direct Linear Transformation (DLT) [2]
algorithm to compute homography H between the picked point
pairs, as described in algorithm 3.

Algorithm 3: The basic DLT for H
Objective: Given n ≥ 4 2D to 2D point

correspondences xi ↔ x′
i, determine the

2D homography matrix H such that
x′
i = Hxi.

Writing xi = (xi, yi, ωi) and x′
i = (x′

i, y
′
i, ω

′
i). For

each correspondence xi ↔ x′
i compute the matrix

Ai =

[
0T −ω′

ix
T
i y′ix

T
i

ω′
ix

T
i 0T −x′

ix
T
i

]
;

Assemble the n 2× 9 matrices Ai into a single
2n× 9 matrix A;

Obtain the SVD of A. The unit singular vector
corresponding to the smallest singular value is the
solution h. Specifically, if A = UDV T with D
diagonal with positive diagonal entries, arranged in
descending order down the diagonal, then h is the
last column of V ;

The matrix H is determined from h as

H =

h1 h2 h3

h4 h5 h6

h7 h8 h9

 ;

F. Blending Images

The algorithm we proposed for blending images is described
in algorithm 4. The final panoramas for set 1, 2, 3 and two of
own custom datasets are shown in Figs 6–10.

Fig. 6: The final panoramas for set 1 using traditional method.

Algorithm 4: Image blending pipeline
Input: Arbitrary number of images
Construct a undirected empty(no edges) graph G with

image ids as its vertices;
while G is not connected and all possible

combinations of image are not exhausted do
Select a new pair of images (i, j);
Compute the homograph Hij between the pair of

images;
if Hij exists then

Add edge (i, j) into graph G;
Store Hij as well as its inverse Hji = H−1

ij ;
end

end
Select the node r in graph G with maximum number

of edges as the common reference frame;
foreach node i ̸= r in graph G do

if Path exist between i and j then
Compute the homograph transformation Hir

from image frame i to image frame r
end

end
Shift the reference frame by (∆x,∆y) so that for any

image i transfromed into the reference frame r, all
image pixels have positive coordinates;

Adjust the reference frame size so that for any image i
transfromed into the reference frame r would fit ;

foreach Homograph transformation Hir do
/* account for the shift (∆x,∆y) */

Hir =

1 0 ∆x
0 1 ∆y
0 0 1

Hir;

Transform image i into reference frame r using
Hir;

end
Copy the image r into its corresponding location in

reference frame r.

Fig. 7: The final panoramas for set 2 using traditional method.

Fig. 8: The final panoramas for set 3 using traditional method.

Fig. 9: The final panoramas for custom set 1 using traditional
method.

Fig. 10: The final panoramas for custom set 2 using traditional
method.

Fig. 11: The final panoramas for test set 1 using traditional
method.

Fig. 12: The final panoramas for test set 2 using traditional
method.

Fig. 13: The final panoramas for test set 3 using traditional
method.

Fig. 14: The final panoramas for test set 4 using traditional
method.

II. PHASE 2: DEEP LEARNING APPROACH

A. Data Generation

To generate the data set, we follow the instruction given in
the description [3].

We firstly grayscale all the images and resize them to 320×
240. Then, we random select a 128×128 patch and implement
random noise to the four corners’ coordinates within [−ρ, ρ]
where ρ = 32, the detailed algorithm is shown in algorithm 5

Algorithm 5: Data Generator Algorithm
Input: corners, cornersnoised, a set of images
Output: patch a, patch b

for image in image set do
patch a = image[corners]
H = transformation matrix between cornersnoised and
corners
patch b = wrapPerspective(patch a, H−1, ∗size)
H4Pt = cornersnoised − corners
save corners and H4Pt to a configuration file

end for

Then all patch a will be stored in folder
data_generated/A, all patch b will be stored in
folder data_generated/B and all configuration files will
go into data_generated/config

B. Supervised Approach

The architecture of the supervised network is visualized in
Figure 22 in appendix. The whole supervised learning model
is constructed based on the given paper [4]. For the optimizer,
we are using using stochastic gradient descent (SGD) with
momentum of 0.9 and a base learning rate of 0.005. The batch
size selected is 64 and we run the training for 120 epochs.

Here are some results from training dataset shown in
Figure 15:

(a) 606.jpg (b) 1390.jpg

(c) 1713.jpg (d) 4289.jpg

Fig. 15: Image overlayed with homography estimated by
supervised learning model shown in blue and ground truth
shown in red for training dataset.

Here are some results from validation dataset shown in
Figure 16:

(a) 558.jpg (b) 591.jpg

(c) 616.jpg (d) 845.jpg

Fig. 16: Image overlayed with homography estimated by
supervised learning model shown in blue and ground truth
shown in red for validation dataset.

Here are some results from test dataset shown in Figure 17:

(a) 4.jpg (b) 114.jpg

(c) 292.jpg (d) 658.jpg

Fig. 17: Image overlayed with homography estimated by
supervised learning model shown in blue and ground truth
shown in red for test dataset.

C. Unsupervised Approach

The architecture of the supervised network is visualized in
Figure 23 in appendix.

The whole unsupervised learning model is constructed
based on the given paper [5]. For the optimizer, we are using
Adam optimizer [6] with learning rate as 0.0001.

The batch size selected is 128 and we run the training for
50 epochs.

Here are some results from training dataset shown in
Figure 18:

(a) 606.jpg (b) 1390.jpg

(c) 1713.jpg (d) 4289.jpg

Fig. 18: Image overlayed with homography estimated by
unsupervised learning model shown in blue and ground truth
shown in red for training dataset.

Here are some results from validation dataset shown in
Figure 19:

(a) 558.jpg (b) 591.jpg

(c) 616.jpg (d) 845.jpg

Fig. 19: Image overlayed with homography estimated by
unsupervised learning model shown in blue and ground truth
shown in red for validation dataset.

Here are some results from test dataset shown in Figure 20:

(a) 4.jpg (b) 114.jpg

(c) 292.jpg (d) 658.jpg

Fig. 20: Image overlayed with homography estimated by
unsupervised learning model shown in blue and ground truth
shown in red for test dataset.

D. Results and Comparison

III. EXTRA CREDIT

A. Collinearity Check in RANSAC Algorithm

For the selected four features pairs in the RANSAC algo-
rithm, we would check if any three points lie on the same

TABLE I: Model Performance

Methods Average EPE Run-time (ms)Train Val Test
Supervised 26.82 50.14 55.63 2.9

Unsupervised 47.44 63.65 62.68 1.7

line. Let the three points be x1,x2,x3. Let n1 = x2 − x1,
n2 = x2− x3. We require:

(n1 · n2)
2 ≤ (η|n1||n2|)2 (7)

This is equivalent to:

|cos θ| ≤ η (8)

where θ is the angle between n1 and n2.

B. Geometric Constraint in RANSAC Algorithm

Choose three pairs from the selected four feature pairs. Let
the three pairs be (x1 ↔ x′

1,x2 ↔ x′
2,x3 ↔ x′

3). The relative
order of points x1, x2, x3 and that of points x′

1, x′
2, x′

3 is the
same. Figure 21 depicts it graphically. To put it formally, every
subset of three correspondences in the selected four feature
pairs must verify the following equation [7]:

((x2 × x3)
Tx1) · ((x′

2 × x′
3)

Tx′
1)) > 0. (9)

Otherwise, the selected four feature pairs should be discarded,
since it leads to an invalid homography.

(a) Points A,B,C in image I1 (b) Corresponding points A′, B′, C′

in image I0. Point C′ must not be
located in the marked region, since
A′, B′, C′ must have the same rela-
tive order than A,B,C. If this con-
straint does not hold, this set of corre-
spondences should be discarded. [7]

Fig. 21: Geometric constraint that must be satisfied in each
random sample.

C. Update the Number of Iterations

The number of maximum iterations k would be continously
udpated in our RANSAC algorithm. Let p be the desired
probability that the RANSAC algorithm provides at least one
useful result after running. RANSAC returns a successful
result if in some iteration it selects only inliers from the input
data set when it chooses the 4 points from which the model
parameters are estimated. Let w be the probability of choosing
an inlier each time a single point is selected, that is,

w = number of inliers in data /number of points in data
(10)

w is not well known beforehand, but we can estimate it based
on the size of the current largest inlier set:

w =
|largest set of inliers|

Number of matched features
(11)

Since 4 points are needed for estimating the homography, w4

is the probability that all 4 points are inliers and 1−w4 is the
probability that at least one of the 4 points is an outlier, a case
which implies that a bad model will be estimated from this
point set. That probability to the power of k is the probability
that the algorithm never selects a set of 4 points which all are
inliers and this must be the same as 1− p. Consequently,

1− p = (1− w4)k (12)

which, after taking the logarithm of both sides, leads to

k =
log(1− p)

log(1− w4)
(13)

D. Data Normalization

As stated in [2] (4.4.4, p. 107: Why is normalization
essential?), data normalization is an essential step in the
DLT algorithm. It must not be considered optional. Thus
algorithm 6 is used instead of algorithm 3:

Algorithm 6: The basic DLT for H
Objective: Given n ≥ 4 2D to 2D point

correspondences xi ↔ x′
i, determine the

2D homography matrix H such that
x′
i = Hxi.

Normalization of x: Compute a similarity
transformation T , consisting of a translation and
scaling, that takes points xi to a new set of points x̃i

such that the centroid of the points x̃i is the
coordinate origin (0, 0)T , and their average distance
from the origin is

√
2;

Normalization of x′: Compute a similarity
transformation T ′ for the points in the second image,
transforming points x′

i to x̃′
i;

DLT: Apply algorithm 3 to the correspondences
x̃i ↔ x̃′

i to obtain a homography H̃;
Denormalization: Set H = T ′−1H̃T .

APPENDIX A
SUPERVISED MODEL GRAPH

The supervised model graph is shown in Figure 22.

APPENDIX B
UNSUPERVISED MODEL GRAPH

The unsupervised model graph is shown in Figure 23.

Fig. 22: Architecture of the supervised network.

Fig. 23: Architecture of the unsupervised network.

REFERENCES

[1] Chris Harris, Mike Stephens, et al. “A combined corner
and edge detector”. In: Alvey vision conference. Vol. 15.
50. Citeseer. 1988, pp. 10–5244.

[2] Richard Hartley and Andrew Zisserman. Multiple view
geometry in computer vision. Cambridge university press,
2003.

[3] Nitin J. Sanket, Lening Li, and Gejji Vaishnavi Vivek.
HW0 Guidence. URL: https://rbe549.github.io/fall2022/
proj/p1/.

[4] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. “Deep image homography estimation”. In: arXiv
preprint arXiv:1606.03798 (2016).

[5] Ty Nguyen et al. “Unsupervised deep homography: A
fast and robust homography estimation model”. In: IEEE
Robotics and Automation Letters 3.3 (2018), pp. 2346–
2353.

[6] Diederik P Kingma and Jimmy Ba. “Adam: A
method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014).

[7] Pablo Márquez-Neila et al. “Speeding-up homography
estimation in mobile devices”. In: Journal of Real-Time
Image Processing 11.1 (2016), pp. 141–154.

https://rbe549.github.io/fall2022/proj/p1/
https://rbe549.github.io/fall2022/proj/p1/

	Phase 1: Traditional Approach
	Corner Detection
	Adaptive Non-Maximal Suppression
	Feature Descriptor
	Feature Matching
	RANSAC for outlier rejection and to estimate Robust Homography
	Blending Images

	Phase 2: Deep Learning Approach
	Data Generation
	Supervised Approach
	Unsupervised Approach
	Results and Comparison

	Extra Credit
	Collinearity Check in RANSAC Algorithm
	Geometric Constraint in RANSAC Algorithm
	Update the Number of Iterations
	Data Normalization

	Appendix A: Supervised Model Graph
	Appendix B: Unsupervised Model Graph

