
Project 1: My AutoPano
Radha Saraf

Email: rrsaraf@wpi.edu
Sai Ramana Kiran Pinnama Raju

Email: spinnamaraju@wpi.edu
Using 2 late days

I. PHASE I: CLASSICAL APPROACH

In this part of the project, we explore the classical methods
to create a panoroma by stiching the image sequences. Each
subsection explains in detail about the methodology followed
and subsequent output of the images

A. Corner Detection

Idea is to draw relationship between how images using a
set of features. Corners are best way to do that since they
are visible from many different views. We can detect as many
corners are possible from the given image and compare the
features across the images. This comparison would tell us
how the images are geometrically related to one another. For
corner detection, we used OpenCV’s Harris corners detection
functionality. Following parameters are for corner detection
are found to be optimal; kernel size 7, harris K parameter
0.04, harris sobel kernel size 11. Figure 1 show the corners
detected across the images.

Fig. 1. image corners

B. Adaptive Non Maximal Suppression

Now that we have detected corners in each image, we
need to find out “best” corners. Best corners are those which
stand out among the local peer corners. Moreover, we want
these corners evenly spread across the image so that we can
get better homographies. To this end, we use Adaptive Non
Maximal Suppression (ANMS) which does 2 parts

1) take local maxima over corners

2) consider only those corners which have a larger distance
from relatively stronger corners

Point 2 is basically the main part of the ANMS which gives
evenly spread out corners from a set of “clusters”. Problem
with harris corners or any other corner detector is that they
detect a cluster of corners instead of just one corner. This
makes sense since a corner is a set of pixels and based on
resolution of the image many pixels can be accurately called
corners. Even if we do local maxima of the image, the cluster
might still persist. To circumvent this problem ANMS takes a
point which is maximally distant to the other stronger corners
and when we take sorted Nbest corners we will be able to
get a point from cluster. Figure 2 shows how the ANMS has
decreased the cluster of corners to good corners.

Fig. 2. ANMS output

C. Feature Descriptor

We need to give each corner an “identity” in order to com-
pare them across the images. This identity is called Feature
Descriptor. Our appraoch to derive this unique identification
is as mentioned in the problem statement

1) chosen corners only that can fit well within the dimen-
sions of (40, 40)

2) flattened this sample into a 1D array
3) took pixels at every 25th index, idea is to take every 5th

pixel rowwise or columnwise
4) finally reshaped into a (8 × 8) patch, standardized and

blurred to make a smooth variation



One of the takeaways from this process of feature descriptor
is how important the standardization is. Initially when we
were playing around with the parameters, we removed the
standardization and tried the feature matching that is described
in the next step. The unnormalized patch didnt match well with
the feature descriptors from other images. The reason being the
contrast, intensity differences. The standardization is making
the patch invariant of these intensity differences and making
the patch more “comparable”. A sample patch of an image
corner can be seen in figure ??

D. Feature Matching

The feature descriptors derived from the above process
now needs to matched with other image feature descriptors.
This matching is the important step since this is what tells
us how much percentage of the images are overlapped with
each other. The better and more accurate approach to reason
about overlapping is ideally using photometric comparisons.
But these direct methods are expensive in nature and hence we
resort to using geometric features like above. In this case we
compare geometric features like corners across the images.
The algorithm for comparison is based on David Lowe’s
ratio test. From the above set of feature descriptors the naive
and simple way would have been to minimize the ’distance’
between feature descriptor vectors. The problem with this
approach is that there cant be false positive that can minimize
the distance and we might end up with bad set of matches.
To prevent this the ratio test compares the first and second
best feature descriptors distances. If the ratio is below certain
threshold ϵ, we add the first best feature pair to the feature
match set. Basically, when we select a match for a feature we
need to make sure that the corresponding feature is adding
value making the pair unique. In case the second best feature
match is also within comparable distance of the first one, i.e it
is above certain threshhold, then first feature correspondence
is not truly unique and thereby not adding any value. With this
rationale, we basically discard the pair and move on. This is
truly a simple and elegant way to test for false positives while
matching features or any data for that matter. Figure ??

Fig. 3. Feature Matches in CustomSet2

E. Random Sampling and Consensus(RANSAC)

Feature matches identified above are not truly correct and
prone to outliers like any other data generated in the world.
To identify which data is part of the set and which data is

outlier, we need to create some sort of data model and fit
the model and reason about them. Again, the naive way to
do is see where the data points lie and manually prune those
data points. Or programatically check standard deviation of
the data scatter and select some quartiles of the standard
deviation. Although these methods are not wrong and not
bad, they need lot of tuning and doesnt generalize well
across the data points. Instead, to achieve this, we perform
RANSAC, Random Sample Consensus. This robust method
gives a probabilistic reasoning on creating a dataset without
outliers [1]. The idea is that we want to identify the minimum
data which give us best fit to our model and generalize well for
all the other data points. In our case, model is the Homography
estimation given a pair of images. We follow the RANSAC
algorithm and get a good feature matches as shown in figure
3. Clearly, we can see that some of the false positive matching
across the towers of the building is removed after performing
RANSAC.

Fig. 4. Feature Matches in CustomSet2 after RANSAC

F. Stitching and Blending
Once we get the relative homography between a pair of

images, we need to stitch them together. We found that
programatically, stitching a little harder and we had inefficient
implementation of it. Below steps outline our approach to
stitching

1) To simplify, let’s say image 2 is being transformed with
H and stitched to image 1

2) we first take the bounding box coordinates of the image
2

3) identify the final bounding box coordinates of image 2
after transformation

4) if the bounding box has negative coordinate element, we
take minimum negative element along each coordinate
axis and translate the transformed image 2 by T

5) Now, since the projected image 2 is translated by T , we
perform the same translation to image 1 to match the
frames in which they are depicted

6) Once they are in the same frame, we find the intersected
polygon of overlapping images. This operation is com-
putationally expensive and hoping to find efficient ways
to do that using OpenCV functionality

7) We perform alpha blending giving different weights to
each pair of the image and merge the overlapped part

The results of following the above steps for stitching can
be seen in 5



Fig. 5. Set1 Stitching

G. Recognizing Panorama

After perfoming the above steps to all the possible pairs, it
is high time to recognize how the panorama has to be created.
Given N unordered images, there are N ! ways in which
panorama can be created. Moreover, selecting the correct
panorama with best overlap is another major task in this
bruteforce approach. A little better way to do is to decrease
the difficulty by making a ordered set of images and stitching
them one by one at the cost of generalizability. Another better
and more generalizable way is to create a DAG of image
nodes showing the relationship of one image with another.
We explore both the approaches and detail it below.

1) Ordered Stitch: To get things started and make sure tht
our code is intact, we explore this method of ordereing the
images and stitching them in sequential manner. Idea is simple,

1) Visually inspect the images and order the images in
which they have to be stitched

2) Initialize the reference image as first image
3) Get the image correspondence between reference image

and second image.
4) Stitch the reference image and second image based on

the estimated homography
5) store the output of the stitch as reference image for

subsequent updates
6) Store this image as a reference image for the third image

and perform the above steps
Figure 6 shows the final result of this process. Although

this method is rudimentary, it performs relatively better to get
started. We observed following problems with this approach

1) Unable to find good feature correspondences in subse-
quent runs once the image is stitched. This is due to the
loss in clarity of the image due to view point changes.

2) Even after optimizing the memory issues perspective
transform is giving zoomed versions of pictures as

shown in figure 7 due to incorrect homographies.
3) More technically, our code is not optimized well and

memory crashes are occuring as the number of images
to stitch is increasing

Fig. 6. Ordered Stitch of Train set 1

Fig. 7. Perspective transforms in Ordered Stitch

2) Image relationship Graph Construction: In this ap-
proach, we create a Directed Acylic Graph of images, which
denote their relationship to one another. Here relationship or
edges are created based on their number of features. It’s more
elegant and well generalized across the data sets. Below steps
outline the procedure for the same

1) Create all the possible image to image correspondences
within the given panorama

2) Store this information in a adjacency matrix where i, j
element denote the number of features correspondences
they share if image j where to transform to image i
perspective. i.e. Hj

i

3) Now, perform a minimum number features thresholding
to remove the edges which has less overlap



4) Fix directions such that we have only one directed
edge to neighbouring nodes. This is done by taking the
maximum feature route

5) In case the number of features are same from both the
directions then we preserve the edge whose pointed node
has more connections and more features. Essentially
indicating that this node or image has better overlap with
many other nodes/images

6) From here, we will end up a graph with one root node
or many island graphs which are well connected

7) we take the graph which has maximum number of nodes
and use the corresponding nodes for panorama stitching

8) the reference node will be the root node of the graph
9) homographies to the root from any node is computed by

multiplying edge homographies as shown in equation 2
If Hj

i is the homography of transforming ith image onto jth
image, and Hk

j is homography of transforming jth image onto
kth image, then Hk

i is given by

Hk
i = Hk

j H
j
i (1)

Generalizing it, for computing homography of ith image
onto lth image connected by a list of nodes is given by

H l
i =

l−1∏
k=i

Hk+1
k (2)

It’s a fairly involved and programmatically interesting pro-
cess. Figure 8 outlines these steps in a pictographical manner.
Figure 9. The problem in the image is that algorithm didnt
account for the original image translation that happens every
time stitching is done to offset the negative portion after
stitching. Hoping to improve this in the future and show that
this approach is indeed more robust and elegant than any brute
force methods.

Results of test,train and custom set are dropped in the Phase
I Results III

II. PHASE 2: DEEP LEARNING APPROACH

A. Data generation

The MSCOCO dataset with 5000 images was used to create
the synthetic data used in the unsupervised and unsupervised
approaches. As described in the problem statement, an active
region is defined for every image. We chose this to be the
central region of the image excluding 150 pixels worth of
length on all four sides. Then, a patch of size 128x128 was
chosen in the active region. This formed a part of the ’Orig’
set. For the same patch we chose perturbations for all its
four corners in the range [-32, 32]. The perturbed corners
together with the original corners were used to calculate the
homography. The inverse homography was then used to warp
the original image and subsequently a patch was cropped from
the warped image at the same location as the original image
corners. This formed a part of the ’Warped’ set. The patch is
then translated by a stride of 32 pixels and the same process
is repeated. Once the horizontal stride exceeds the limits, the

Fig. 8. TestSet1 DAG of images relationship along with adjacency matrix of
feature edges

patch is translated vertically downwards. This way based on
the original image size we gather multiple pairs of data from
one image. We end up with around 29000 image pairs from the
original 5000 in this way. Both gray scale and color patches



Fig. 9. TestSet2 output from graph based panorama stitching

were created to compare which one performed the best.

B. Supervised Approach

Fig. 10. Homography Net

The supervised deep learning approach uses the data gen-
erated using section 2A. We first used the same network
architecture as used in the original HomographyNet paper. It
is architecturally similar to Oxford’s VGG Net and uses 3x3
convolutional blocks with BatchNorm and ReLUs. (see Figure
1). We use 8 convolutional layers with a max pooling layer
(2x2, stride 2) after every two convolutions. The 8 convolu-
tional layers have the following number of filters per layer:
64, 64, 64, 64, 128, 128, 128, 128. The convolutional layers
are followed by two fully connected layers. The first fully
connected layer has 1024 units. Dropout with a probability
of 0.5 is applied after the final convolutional layer and the
first fully-connected layer. The network takes as input a two-
channel grayscale image sized 128x128x2. In other words,
the two input images, which are related by a homography, are
stacked channel-wise and fed into the network.

For this network architecture and data, we saw an exponen-
tially decreasing loss on the train set wheareas a constant one
on the validation set. The learning rate was kept at 0.005

Fig. 11. HomographyNet: Training loss

Fig. 12. HomographyNet: Validation loss

We changed the input to RGB images, so this time around
the input was a 128x128x6 tensor formed by the two color
images stacked channel-wise. The results were pretty much
the same on this one as well.

We decided to increase the dropout between one of the later
convolutional layers as a potential solution to the overfitting.
We also tried changing the optimizer to AdamW which is
believed to be better at generalizing than the Adam optimizer
that we were previously using. Figure 13 shows a comparison
between these two alterations. The dropout change perfor-
mance is seen in blue whereas the dropout along with the
optimizer change is seen in pink. Pink is clearly even worse.
The learning rate was changed to 0.001 for both of these tests.

C. Unsupervised Approach

The unsupervised deep learning approach also uses the same
data generated using section 2A and the same architecture as



Fig. 13. Network changes: Dropout, Dropout with AdamW

Fig. 14. Unsupervised overview

HomographyNet for generating the 4 point parametrisation of
the Homography matrix, H4pt. A tensor direct linear transform
(TensorDLT) formulation gives the 3x3 Homography matrix
from the H4pt output out of HomographyNet. This layer has
to be differentiable so as to have the gradients propagated
through the network. We used functions from the pytorch
library to create this layer. After obtaining the 3x3 homography
matrix using tensorDLT, the original image is warped with
this homography using a Spatial Transformer Network(STN)
layer to obtain the warped image from the model. The STN
is another differentiable layer in the network which facilitates
the photometric loss calculation of the warped image against
the ground truth input data.

Figures 15 and 16 show the training and validation losses
for the unsupervised model. The model is shown in figure 17

Fig. 15. Unsupervised Network: Training loss

Fig. 16. Unsupervised Network: Validation loss

III. PHASE I RESULTS

1) Train set results: Figures 18, 19 and 20 show the outputs
of Ordered stitch algorithm

2) Custom set results: Figure 21



Fig. 17. Supervised and Unsupervised model

Fig. 18. Train Set I

Fig. 19. Train Set II

Fig. 20. Train Set III



Fig. 21. Custom Set I

A. Test Set results

Figures 22, 23 and 24 show the outputs based on Ordered
stitch algorithm

Fig. 22. Test Set I

Fig. 23. Test Set II

Fig. 24. Test Set III

IV. PHASE II RESULTS

Figures 25, 26, 27 show the sample original image, the im-
age warped using perturbations(ground truth) and the warped
image using the model.

Fig. 25. Sample image

REFERENCES

[1] https://www.youtube.com/watch?v=9D5rrtCC E0ab channel=CyrillStachniss



Fig. 26. Image warped using perturbed corners

Fig. 27. Image warped using model


