
Project 1 - MyAutoPano Report.
Shounak Naik

Robotics Engineering Department,
Worcester Polytechnic Institute,

Worcester,MA, USA.
ssnaik@wpi.edu

Venkatesh Mullur
Robotics Engineering Department,

Worcester Polytechnic Institute,
Worcester,MA, USA.

vmullur@wpi.edu

I. INTRODUCTION

In this project, we learned about how corners are better
feature than edges and why we take into consideration corners
in the images. We implemented important concepts in com-
puter vision like Adaptive Non-Maximal Suppression, feature
mapping, RANSAC and Homography. The main objective of
the project was to stitch two or more images to create a
panorama. The images had some amount of overlap and we
implemented stitching of panoramas using classical computer
vision technique and a modern deep learning technique. Ho-
mography is used to orient the images and make a better
panoramic effect.

II. PHASE I
In this section, we put forth our approach to stitch images

together to form a panorama. This is done by extracting feature
in all the images and trying to find the best match between the
feature points. To implement this we are considering corners
as our features since they can be easily distinguished using
the neighbouring pixels. These corners are then uniformly
distributed using Adaptive Non-Maximal Suppression which
are then converted into feature vectors or feature descriptors.
Basically, every good feature/corner in all the images are
represented as a feature vectors. These feature vectors are then
mapped to features in other images to find the best match
between them. To discard the incorrect matching between the
features, we use RANSAC where we discard the ”outliers” and
only keep the ”inliers”. Finally the homography of the second
image with respect to the first image is calculated which is
then used to warp images and stitch them. The two images
having some overlap are shown below which are supposed to
be stitched together to form a panorama.

Fig. 1. Images to be stitched.

Fig. 2. Overview of the classical method.

A. Corner Detection:

– Corners are supposed to be good features in an
image because they have varying gradients in all
directions and we can easily detect corners using the
neighbouring pixels. Where as edges have different
gradients in only two directions.

– CV2 offers two different techniques to detect
corners namely- cv2.goodfeaturestotrack and
cv2.harriscorners. We have used the Harris Corner
detection method to detect corners.

– The output of the corner detector (Harris corners) is
shown in the fig. 3 . We can notice that it forms blobs
near the corners while if we use the other method
from CV2, which has inbuilt ANMS, the output
looks well distributed and robust. Since, we have
implemented our own ANMS which is described in
the next section, we decided to use Harris Corners
method.

B. Adaptive Non-Maximal Suppression:

– As mentioned earlier in the report, we see blobs
of corners after detecting corners using Harris
corner detection. To make it look better, uniformly
distributed and bring out local maximas and
suppressing the unnecessarily detected corners, we
use ANMS or Adaptive Non-Maximal Suppression.

Fig. 3. Corner Detection of first image.

Fig. 4. Corner Detection of second image.

– In some case, due to the orientation of the image
captured, the corners might not be very sharp.
So these corners might get multiple hits in corner
detection. ANMS tries to suppress redundant corners
and make them well distributed.

– The harris corner detector gives us the scores
of how much the detected corner is actually a

Fig. 5. Corner Detection of third image.

Fig. 6. Adaptive Non-Maximal Suppression Algorithm.

corner depending upon the parameters given.
Using maximum filter which corresponds to
”imregionalmax” in matlab, we only passed the
local maximas and called them Nbest corners.

– In the fig.6, a pseudocode of ANMS implementation
is given. Figure 7 and 8 actually show the ANMS
implemented by us.

Fig. 7. ANMS on first image

Fig. 8. ANMS on second image

Fig. 9. ANMS on third image

C. Feature Descriptor and Mapping:

– Now we have all the feature points which are the
Nbest points in both the images. These points are
basically local maxima corners that are given out
by ANMS.

– Due to the overlap in the two images and our next
objective is to map each point in one image to the
corresponding point on the other image, we need to
describe every point with some descriptor.

– That is why we are creating a feature descriptor as
a feature vector corresponding to every point in all
the images.

– These features are taken as a patch of 40*40 with
the feature point at the centre and convolving this
patch with a gaussian filter. This patch is then
sub-sampled to 8*8 patch and then converted into a
vector of 64*1. This is shown below in the figure 8.

Fig. 10. Feature Vector/descriptor.

– After getting a feature vector for every Nbest point
in both the images, our main task is to map these
features. Mapping is basically finding out a match
of the feature from one image to the other.

– This mapping is done by choosing one point in
the first image and then computing sum of square
differences (SSD) between all the points in the
second image. We already have initialized the lowest
distance and second lowest distance variables as
infinity in the beginning. Then for each distance, if
the distance is lesser than the lowest distance, then

update it; similarly with the second lowest distance.

– Finally by taking the ratio of the lowest distance
to the second lowest distance and checking if it is
greater than a threshold, then we consider it as best
matches.This way we find the matches in the two
images which are shown the figures 11, 12 below.

Fig. 11. Feature Mapping from first image to the second.

Fig. 12. Feature Mapping from second image to the third.

D. RANSAC (Random Sampling Consensus:

– Our main objective of this step is to calculate
homography between the two images. Homography
is similar to tranformation but on images. To
calculate accurate homography we must check
whether we have correctly matched the features.

– Using RANSAC, we are trying to incorrect
mapping between two features and then calculating
homography. Since we want to calculate
homography, we have four unknown variables.

– We take these random 4 points in the both the images
and then we calculate homography between them.
Now we discard the incorrect matches by taking the
points in the transformed first image and the points in
the second image then calculate the distance between
them. If the distance is below the threshold then call
them inliers, if not then these the outlier that are to
be discarded.

– Repreating this steps for a number of iterations and
keeping the largest set of inliers, we get an accurate
homography matrix between the inliers.

Fig. 13. RANSAC between first and second Image

– Now we have the homography between the first and
the second image. Now we can warp the first image
with respect to the second. The warped Image is
shown in the figure 14 below.

Fig. 14. Warped Image

E. Stitching and Blending:

– Now that we have the warped first image, we need
to come up with some logic to place the second
image so that they stitch properly.

Fig. 15. Coordinates (0,0) of the second image

– Figure 15. shows us the new coordinates of the
second image. It will give us minimum and
maximum value of the X’ and Y’.

– Upon trial and error method, we realised that there
is a displacement of the first image to left because
of calculating the homography. So we shift it back
to the (0,0) using another transformation.

Fig. 16. Stitched Image

– We tried Alpha blending, but due to time constraints,
we did not move ahead. But, we can try Poisson
Blending too. For stitching the third image,there
were no inliers between the stitched and the third
image hence we could not stitch it. But, we some
of the image relevant to the project are given below.
They are the snapshots of what all we tried.

Fig. 17. Feature mapping of the stitched image and the third Image

Test Set:

Fig. 18. Corner detection1

Fig. 19. Corner detection2

Fig. 20. ANMS1

Fig. 21. ANMS2

Fig. 22. Feature Mapping

Fig. 23. Stitching

Fig. 24. Warping

III. PHASE II:

With the use of Deep Learning, everything we did in
the first phase can be done in one shot without even
actually tuning some important parameters. Corner detec-
tion, ANMS, Feature Mapping, RANSAC and Blending
is done using Deep Learning. Deep Learning enables us
to create a robust pipeline to stitch panoramas and with
greater speeds. In this section we are implementing two
networks - one supervised and one unsupervised. The
results and training/testing losses are mentioned below.

A. Data Generation:

– To calculate homography between two images in a
dataset can a little heavy because we need to warp
one of the images in 3D space which might take a
lot of time and it can be computationally expensive.
For that we are creating a synthetic dataset taken
from MSCOCO dataset. Since, this dataset is a very
large, and the training would require a lot of time
and memory, we are working on a chunk of this
dataset.

– MSCOCO dataset contains a lot of objects in natural
images and the network we are implementing needs
to have same size of the inputs. We are trying to
implement a HomographyNet which does not accept
arbitrary sizes of the images. In order to do that
we are taking 128*128 patch in the middle of the
image so that it does not go out of bound when we
perturb it with some threshold.

– As shown in the fig.25 the blue patch is the first
patch and the second patch is the perturbed patch.
This perturbation is achieved by taking the corners of
the blue box and adding/subtraction random values
to it. The threshold to these addition/subtraction in
our case is set to 16 units.

– To ensure that this perturbation does not go
out of bounds, we try to place the patch in the

Fig. 25. The two patches & the perturbations as input to the HomographyNet.

mid portion of the images. This is done on all the
images and then resized to the size of the first image.

– This perturbation is done on the fly, that means
for every epoch the patch selected is different and
hence the perturbations also change. This ensures
data augmentation and robust training.

– The two patches on the image in the fig.25 are the
inputs to the network. But since the network does
not accept arbitrary sizes, we need to come up with
some logic to do so.

– To do that, since we have corners of the two patches,
we can find the homography between them. Then
we do the inverse of that homography matrix, now
essentially we can go from the second patch to the
first patch.

– Now this inversed homography matrix is multiplied
by the first image to get a square patch (which was
perturbed earlier) and the coordinates of the corners
of the first images will the corners in the second
image (perturbed).

– Essentially we warped the image in such a way that
the perturbed patch looks square. Now this patch is
saved in a pickle array and is given as input to the
network with the first random patch generated in the
first step.

B. Supervised Approach:

– The basic idea of this network is giving 2 images
as inputs to the network with known homography
between them and the output of the network should
be 8 points (4 corners). These 4 corners are the
warped corners of the patch.

– Basically, we are doing regression. The first input
is a patch, the second is the perturbed version of
the patch with the same size. The labels are the

Fig. 26. Architecture of the HomographyNet.

homography between them which is calculated by
CA - CB where CA and CB are the corners of the
patches A and B. This is called as H4pt. It is then
converted into a homography matrix by using DLT.

– We are expecting the output to be the 4 corners of
the H4pt as shown in the fig.27. As shown in the
fig.26 we have implemented a similar deep learning
model with half the layers.

■ Batch size = 64
■ Number of epochs = 50
■ Optimizer = Adam Optimizer.

Fig. 27. Flow of the HomographyNet.

– The network will throw out 8 values of the H4pt or
4 point homography. The loss function would be the
L2 loss of the predicted 4 point homography and the
ground truth of the homography.
||pred(H4pt)−H4pt||2

C. Results:

• The output of the network is the 4 point homography,
when we add the original corner points to the output
of the network to get the homography matrix. Our
model is a little bit overfitted but, by changing some
hyperparameters and number of epochs, we can achieve
a better accuracy.

• The training loss of our model is shown in the fig.28.
And the results are shown in the fig.29 and fig.30

Fig. 28. Training Loss.

Fig. 29. Test Image 1.

• The blue box in the fig.29 and fig.30 is the ground truth
of the Patch B and the red one is the predicted one.

D. Unsupervised

The unsupervised learning pipeline is an extension of the
supervised learning pipeline. The overview of the pipeline

Fig. 30. Test Image 2.

can be seen in Figure 31. The Homography Net that we used
in the unsupervised learning is the same as the one used
in the Supervised Learning part. After we get the H4pt,
we use the TensorDLT method to convert H4pt into the H
(homography matrix). This Homography matrix is further
used in the Spatial Transformer Network to warp the Patch
A. This warped Patch A is then compared with the the Patch
B. They are compared with each other with a photometric
loss which essentially is a pixel-wise L1 − norm. This loss
is backpropogated to optimize the entire network.

1) TensorDLT: TensorDLT does the similar function as the
cv2 getPerspectiveTransform. The difference between these
two methods is that the TensorDLT gives a differentiable
output. TensorDLT converts the 8 dimensional H4pt into 3∗3
H matrix. This is done by formulating this problem as a
Ax = B. By solving for x, we get the Homography matrix.
The A matrix is obtained by stacking Ai like in the Figure
32.

Fig. 31. Unsupervised Learning Pipeline

Fig. 32. Stack Ai’s like this for every point pair to form A

2) Spatial Transformer Network: This network helps
us warp a given image with the homography matrix. This
layer in the network also has to be differentiable since the
backpropogation flows through this. After getting the warped
image, we use photometric loss to find our error between
the predicted Patch B and actual Patch B. This part was not
implemented by us and we directly used a third party API -
kornia to implement this.

3) Results and Implementation Problems: While generating
the batches for corners, we faced interesting issues. By
tackling these issues we learned how to collate and shape
the batch so that we can use it in the structure of our code.
After fixing errors, we saw that the loss is not decreasing
for our unsupervised pipeline. We could not understand
how we could solve this issue in the given amount of time.
Nonetheless, assuming that our network would have been
trained correctly, we wrote the Testing code. The testing code
is similar to the supervised part where we take the H4pt
predicted and then we get the predicted patch B.

The training loss graph of this section can be seen in Figure
33. A sample test image of this technique can be seen in Figure
34

Fig. 33. Training Loss for unsupervised technique.

IV. CONCLUSION:

In the first phase we stitched the overlapped images into a
seemless panorama, but when stitching the third image, there
were no inliers found so we could not show the final results.
But we could stitch 2 images from the test set and the result is
good. We can improve these results by detecting better corners
and making the hyperparameters tune. We can also find a better
logic in stitching and blending that might make the output look
even better.

The results obtained from the deep learning which we
implemented were not very encouraging because we could
not get much time to tune the hyperparameters. With the
tuning, we are sure to get better results. The mean loss

Fig. 34. Test image for unsupervised method. Blue lines mean the patch B
and Red Lines mean the predicted Patch B

obtained in the supervised learning was 81.44 and in the
unsupervised part was 84.26. In the unsupervised learning
model, the loss is not varying over epochs and we suspect that
the backpropogation is not being implemented. Nonetheless,
we got to learn and experience a lot over this project and since
we have implemented it from scratch we can say we know the
concept behind it.

This project was a great experience for us as we got to
learn both the classical and neural network pathway to solve
the image stichting problem. We found the geometric concepts
very fascinating. We also learnt a lot on how to use the cluster
and to do remote computing. We also learnt to use vim which
is a very good skill to have. We look forward to the next
projects in this course.

REFERENCES

[1] chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://arxiv.org/pdf/1606.03798.pdf.
[2] https://cocodataset.org/home.
[3] https://arxiv.org/abs/1709.03966.
[4] https://github.com/kornia/kornia/tree/master/examples/homographyregression.
[5] https://github.com/abhi1625/CMSC-733/blob/462fab67e46246794bdbda4c84d2bd77b54432af/Abhi1625p1/Phase1/Code/MyPano.pyL204
[6] https://github.com/p-akanksha/MyAutoPano/blob/051912d9c9656af57bd90db75f7bfff94f27225c/Phase1/Wrapper.py.
[7] https://github.com/advaitp/My-AutoPano/blob/9960f44b6be65a3dd1c6c28216add5e1ee52d3a0/Report.pdf
[8] https://cs231n.github.io/.
[9] https://medium.com/@navekshasood/image-stitching-to-create-a-

panorama-5e030ecc8f7.
[10] https://ignitarium.com/use-of-homography-matrix-for-image-stitching/.
[11] chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://momohuang.github.io/assets/img/Panorama/panoramareport.pdf.
[12] chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://courses.cs.washington.edu/courses/cse576/16sp/Slides/10ImageStitching.pdf.

	Introduction
	Phase I
	Corner Detection:
	Adaptive Non-Maximal Suppression:
	Feature Descriptor and Mapping:
	RANSAC (Random Sampling Consensus:
	Stitching and Blending:

	Phase II:
	Data Generation:
	Supervised Approach:
	Results:
	Unsupervised
	TensorDLT
	Spatial Transformer Network
	Results and Implementation Problems

	Conclusion:
	References

