
Project1: AutoPano
RBE549

(Using 2 late days)
Karter Krueger

Department of Robotics Engineering
Worcester Polytechnic Institute

Worcester, MA 01609
Email: kkrueger2@wpi.edu

Tript Sharma
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, MA, 01609

Email: tsharma@wpi.edu

Fig. 1. Corner Harris

I. PHASE 1: TRADITIONAL APPROACH

The first task of the assignment was to create a panorama
using traditional computer vision. The approach has six stages:

1) Corner Generation
2) Adaptive Non-Maximal Suppression (ANMS)
3) Feature Generation
4) Feature Matching
5) RANSAC
6) Merging and Blending

A. Corner Detection

We detected corners in the image using the
cv2.cornerHarris() function which outputs the
corner scores on each pixel. These corners are treated as
the lowest level features we’ll use to match images. The
parameters for the function i.e neighbourhood size, aperture
size and K are set to 4, 5 and 0.04 respectively. The output
is shown in Figure 1.

B. Adaptive Non-Maximal Suppression

The output of the Harris corners in Figure (1) contains
many points that are clustered to certain regions, which is

Fig. 2. ANMS Result without convolution pruning

problematic when it comes to stitching as we want features
that are more evenly distributed across the image. Points
close to the optimal corners in the image have a high score
as well which leads to the accretion of corers into a small
blob. Ideally a corner should be just one pixel and the pixels
should be spread across the image uniformly (to prevent abrupt
warping in some regions of the image). To achieve this we use
ANMS which calculates the local maximas in the image. We
used the scipy.ndimage.maximum_filter() function
and converted it into a mask. However, we were receiving a
white blob in top left corner that affected the computaition
and feature descriptor calculation giving false positives. We
convoluted the image with a kernel of ones of size (3,3) and
removed the points with value greater than 1. The outputs of
ANMS before and after convolution are presented in Figures
2 and 3 respectively.

C. Feature Descriptors

The corner points returned from Section ?? are used to
generate features encoding the local information about the
unique points in each image which can be used to match
image pairs. A patch of size (40,40) was converted into a
descriptor of (64,1) using a sub-sampling step of 5 pixels after
performing Gaussian blur with σ = 5. One of the resultant
feature descriptors for Figure 1 is shown in Figure 4



Fig. 3. ANMS Final Result

Fig. 4. Feature Descriptor

D. Feature Matching

The features generated in Section I-C are used to compare
two images using a O(N2) SSD calculation between each
feature descriptor pair of any two given images. We kept the
best matches where the ratio between the best and the second
best pair was less than a set threshold of 0.75.

E. RANSAC and Homography Estimation

Feature matches are often noisy (as seen in Figure 5 ), so
it is necessary to remove bad matches before estimating the
homography to align the images. RANSAC [?] is a method
of removing outliers while estimating the best homography.
RANSAC works by repeatedly selecting 4 random pairs of
points and computing the homography and number of inliers
between the two images which is evident on comparing
Figures 5 and 6

F. Matching and Blending

After obtaining the homography matrix using all the inliers
from RANSAC, we match images based on the overlap
between the image pairs. However, to calculate which images

Fig. 5. Feature Matching

Fig. 6. RANSAC

stitch together well, we created a connectivity matrix where
C(i, j) = Inliers(i, j)∀Inlier(i, j)/Matches(i, j) > 0.25.
Here C is the connectivity matrix, i and j correspond to the
image pair of Images i and j in the Image set.

The connectivity matrix is used to identify how each image
is linked to other images. We performed a DFS search on each
image set to identify the longest chain of images. The resultant
graph was used to warp the images around the center image
in the chain with their homographies chained together in the
direction of the image from the center to obtain the actual
homography for an image in the set. The images are blended
together by taking the union of each image pair across the
three channels.

G. Test Results

The following are our approach’s results on Train and Test
sets:

Fig. 7. Corner Harris on Train Set 1

Fig. 8. Corner Harris on Train Set 2

H. Deep Learning-based Stitching Results

An alternative to the classic method is to use a deep learning
approach to compute a homography between each pair of
images and stitch them together. While the training loss from
our tests appeared low on the training and validation data, we
found that stitching results did not turn out as good. The results



Fig. 9. Corner Harris on Train Set 1

Fig. 10. ANMS on Train Set 1

Fig. 11. ANMS on Train Set 2

Fig. 12. ANMS on Train Set 3

of stitching using the supervised and unsupervised methods are
shown in Figs. 30 and 31, respectively.

II. PHASE 2: DEEP LEARNING HOMOGRAPHY
ESTIMATION

At times, it is challenging for the classic methods to
match similar features, such as those seen in the checkerboard
dataset. This is one way that deep learning-based methods

Fig. 13. 25 Random Feature Descriptors for Train Set Images 1,2,3 respec-
tively

Fig. 14. RANSAC Train Set 1

can out-perform the classic methods, in addition to running
much faster with one-shot homography generation rather than
the tedious steps of finding points, matching, and filtering. In
phase 2 we implement two approaches to deep networks with
both supervised and unsupervised approaches.

A. Dataset Generation

First, we must generate a dataset that can be used for
training since it would be very challenging to otherwise collect
enough accurate ground truth data to train a model. We use
a subset of the MS-COCO dataset of 5000 images. For each
image, we select a random coordinate in the view and get 4
points that create a 128x128 box to be cropped from the image
as a patch. We then apply random perturbations to the 4 corner
points and calculate a homography matrix for the simulated
perspective change. This homography can then be applied to
the original image and the matching patch from the warped

Fig. 15. RANSAC Train Set 2



Fig. 16. RANSAC Train Set 3

Fig. 17. Set 1 Images Stitch

Fig. 18. Set 2 Images Stitch

Fig. 19. Set 3 Images Stitch

Fig. 20. Corner Harris on Test Set 2

Fig. 21. Corner Harris on Test Set 3

image is then cropped from the same region. This causes a
simulated shift in perspective as if the camera was at a new
angle when taking the photo.

We warped photos by adding random deltas to the corners
using a normal distribution with mean = 0 and σ = 10. We



Fig. 22. ANMS on Train Set 2

Fig. 23. Feature Descriptors for Test Set Images 1,2,3 respectively

Fig. 24. ANMS on Train Set 3

also trained a second network with a σ = 25 for more severe
warps to see if the network would be more robust for the
datasets.

B. Supervised Approach

The first network implemented is a supervised approach.
This network takes in a stack of the two RGB images for an
input size of 128x128x6 and outputs a vector of the 4 corner
point perturbations as an 8x1 vector that can be reshaped to
4x2 for 4 points with x,y shifts. The shifts can then be added

Fig. 25. RANSAC Test Set 1

Fig. 26. RANSAC Test Set 2

to the the original corner values and a homography matrix is
calculated. We implemented the original architecture seen in
the paper. The network architecture used for HomographyNet
used in both supervised and unsupervised training is also
shown in Figure

We trained using SGD, with a learning rate of 0.0005, for
6hours to reach 200 epochs. The training and validation loss
plots are seen below in Figs. 40, 41. The result of the 1st
supervised network on the test set is a loss value of 14.68
MSE average across the 1000 test images. The result on the
2nd supervised test (with σ = 25) was 37.28 MSE.

C. Unsupervised Approach

The second network uses an unsupervised approach with
an identical architecture to the supervised method, but a very
different calculation of loss. Loss is calculated through several
steps. First, the corner delta offset values come out of the
network and are used with the 4 corners (that we used to
crop) to find the homography matrix. Next, the homography
is applied to the original image A and cropped to get the new
version of image B patch. We then calculate the L1 (absolute
mean error) loss between the original patch B and the re-
produced version based on the network homography. We call



Fig. 27. RANSAC Test Set 3

Fig. 28. Test Set 2 Images Stitch

this the photometric loss as it is the difference between the
image pixel intensities. We trained the unsupervised network
for 33 epochs with a SGD learning rate of .005, similar to our
supervised network. The training and validation losses from
each epoch are shown in Figs. 42 and 43, respectively. The
network was then evaluated on the provided test set (1000
images) and resulted in an average MSE loss of 144 using the
same evaluation metric as the supervised approach for easier
comparison.

Fig. 29. Test Set 3 Images Stitch

Fig. 30. Stitching result on the dataset using the supervised homography
network

Fig. 31. Stitching result on the train set using the unsupervised homography
network



Fig. 32. Original image (top) and 5 warp pairs (bottom), with σ = 10

Fig. 33. Original image (top) and 5 warp pairs (bottom), with σ = 10

Fig. 34. Original image (top) and 5 warp pairs (bottom), with σ = 10

Fig. 35. Original image (top) and 5 warp pairs (bottom), with σ = 10



Fig. 36. HomographyNet Architecture

Fig. 37. Original image (top) and 5 warp pairs (bottom), with σ = 25



Fig. 38. Original image (top) and 5 warp pairs (bottom), with σ = 10

Fig. 39. Validation Loss for Supervised Model (σ = 10)

Fig. 40. Validation Loss for Supervised Model (σ = 25)

Fig. 41. Training Loss for Supervised Model (σ = 25)

Fig. 42. Training Loss for Unsupervised Model

Fig. 43. Training Loss for Unsupervised Model


