
RBE/CS549 COMPUTER VISION, P1, SEP 13, 2022 1

RBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer Vision
Project 1- AutoPano

Anagha Dangle - Mihir Kulkarni
ardangle@wpi.edu - mmkulkarni@wpi.edu

Using 2 Late days

Abstract—The assignment is divided into two phases:
Phase 1: Traditional approach- In this phase of assignment,
traditional approach to Panorama stitching is implemented.
The detailed process for the same is explained further in the
document.
Phase 2: Deep learning approach- Two approaches of supervised
as well as unsupervised are used in the scope of the project. This
part is used for finding the homography for further processing
which is explained in detail further.

Index Terms—Adaptive Non-maximal Suppression, RANSAC,
Homography matrix, Spatial Transformer Network, TensorDLT.

I. PHASE 1: TRADITIONAL APPROACH

In this assignment, a simplified version of Panorama stitch-
ing was to be implemented. The basic task is to stitch multiple
images to form a Panorama using warping and Homography
technique. The following steps are applied on every individual
two images and then combined for the multiple images in the
set. This approach has six main basic steps:
1. Corner detection
2. Adaptive Non-Maximal Suppression
3. Extract the features i.e. Create a feature descriptor
4. Match the features from both the images
5. RANSAC for removing the outliers and getting the homog-
raphy matrix
6. Warping, stitching and blending the generated images
Each step of the algorithm is detailed in following section.

A. Detect corners

The first step to panorama stitching is to find the
strongest corners in the image. For this we have implemented
cv2.goodFeaturesToTrack which is the part of OpenCV and
an implementation of Shi-Tomashi method of identifying
strongest corners. It also has the functionality of using Harris
Corner detector is set True, can be used. A grayscale input
image is given to the function, with other parameters being
quality level and euclidean distance between the corners. It is
observed by us that changing the quality of corners has a rastic
effect on the further steps of matching features. The value was
iteratively adjusted to be optimal for the set of the images
given. However, given a new set of images this tuning would
further be more cumbersome. Also the goodFeaturesToTrack
already uses the ANMS in itself as seen in the paper by Shi-
Tomashi so the step of doing ANMS is likely to not make
much difference.

B. Adaptive Non-Maximal Suppression

The ANMS algorithm finds the N best corners of the
grayscale image. The euclidean distance between the points
is used to find the best corner between the cluster of points
and uniformly distribute them. As seen from the figure the
corners are evenly distributed. This will help to get good
and even matches for further stitching. The best corners to
be selected are decided by sorting the corners in descending
order based on their calculated Euclidean distance. What we
observed was that number of best corners has a non-linear
effect i.e. increasing or decreasing the number of corners
does not necessarily have the same effect on the matches.

Fig. 1: Detected corners (Train set 1): Iteration 2



RBE/CS549 COMPUTER VISION, P1, SEP 13, 2022 2

Fig. 2: Detected corners (Train set 2): Iteration 2

C. Feature descriptor

The first step we do here is to pad the input image with
the patch size defined. This is done to avoid boundary and
indexing conflicts. Later, the image is divided into patches of
400 size around a selected corner on which a Gaussian blur
is also applied. This 40x40 patch is sub-sampled to get a 8x8
which in turn is resized to 64x1 vector with encoded features.
We also apply mean and standardize the vector to remove any
bias.

D. Feature matching

Each corner point now has a 64 feature vector associated
with it. In this step we find one-to one correspondence
between the images. We find the SSD between the points in
image 1 and image 2. Then after sorting, the ratio between
the first and second lowest distance is calculated and if it is
below the threshold we provided, we accept the matched pair
or else reject it. Instead of using the SSD, other distances can
also be explored such as Euclidean and others.

Fig. 3: Match features (Train set 1)

E. RANSAC

This is one of the most important part of the entire process.
Depending on the thresholds of RANSAC the number of pairs
selected can vary. The matching pairs that we get from the
feature matching have some outliers i.e. incorrect pairs as well.
We need to filter out these pairs to get proper homography
matrix and stitching.

Fig. 4: Match features (Train set 2)

Fig. 5: Match features (Train set 1): Iteration 2

Fig. 6: Match features (Train set 1): Iteration 2

The RANSAC algorithm runs for 3000 iterations and selects
4 points randomly. These four points are selected from the
feature vector1 and feature vector2. The exact homography
between these two is calculated. Then we compute SSD
between estimated points after transformation and the actual
points in the image. The largest set of inliers is then selected
through the algorithm after repeating 3000 times. The final
homography is then calculated by using this set of inliers.

Fig. 7: RANSAC (Train set 1)



RBE/CS549 COMPUTER VISION, P1, SEP 13, 2022 3

Fig. 8: RANSAC (Train set 2)

Fig. 9: RANSAC (Train set 1): Iteration 2

Fig. 10: RANSAC (Train set 2): Iteration 2

F. Stitch images

So for stitching the images we a use a very basic method
for N multiple images. We compute homography for images
sequentially, and keep on adding it on the newly created image.
We warp the second image and add it on the first image. Then
this image acts as the image holder and then we add third
image on the image created in the previous iteration. This
cycle goes on till the end of images is reached. The problem
with this approach is that the panorama is not created for more
than five images and also depending on the set of images this
number varies. Tuning some of the parameters gives better
results but it is still trial-and-error process. The problems with
this approach is the original image gets warp to an extent
where stitching on the image holder is not possible.

Another problem with this approach is it considers all the
images sequentially so if the test set has random images and

there are no features detected it throws an error. As the number
of images start increasing the warped distortion increases and
thus adding more images to the same place holder becomes a
problem. The blending of the images is also not uniform as
it is just overlapped on the previous image and not properly
blended.

We studied different warping and blending techniques like
cylindrical warping, perspective warping, Laplace blending,
Poisson blending, etc. however we were not able to implement
them due to time constraint. According to our observation,
these techniques would perform far better than the crude
algorithm we implemented.

Fig. 11: Panorama (Train set 1)

Fig. 12: Panorama (Train set 2)

G. Improvements that can be made and observations

We observed that changing the percent of inliers affects
the RANSAC calcultaions and in-turn the stitching. So to
improve the accuracy for stitching we increased the probability
of outliers in every iteration. We also decreased the number
of corners that are generated iteratively. When the images go
beyond a threshold number of 3 this process is triggered. This
ensures that the best matches are retained and the homography
matrix calculated is proper.



RBE/CS549 COMPUTER VISION, P1, SEP 13, 2022 4

We also wanted to test another approach where we separate
the number of images in three parts and stitch them together at
the end and also dynamically select matches from only specific
region of the images. This would probably lessen the problems
while stitching and blending. However, due to time constraint
this approach was not implemented.

H. Results

Following are sample results for Test Set1 and Custom Set1.
Other results are shown in the end of the report. The results
from all the panoramas are shown in Fig (33).

Fig. 13: Detected corners (Test Set 1)

Fig. 14: Detected corners (Test Set 1): Iteration 2

Fig. 15: Detected corners (Test Set 1): Iteration 3

Fig. 16: Matched features (Test Set 1)

Fig. 17: Matched features (Test Set 1): Iteration 2

Fig. 18: Matched features (Test Set 1): Iteration 3

Fig. 19: RANSAC (Test Set 1)



RBE/CS549 COMPUTER VISION, P1, SEP 13, 2022 5

Fig. 20: RANSAC (Test Set 1): Iteration 2

Fig. 21: RANSAC (Test Set 1): Iteration 3

Fig. 22: Result (Test Set 1)

Fig. 23: Detected corners (Custom Set 1)

Fig. 24: Detected corners (Custom Set 1): Iteration 2



RBE/CS549 COMPUTER VISION, P1, SEP 13, 2022 6

Fig. 25: Detected corners (Custom Set 1): Iteration 3

Fig. 26: Matched features (Custom Set 1)

Fig. 27: Matched features (Custom Set 1): Iteration 2

Fig. 28: Matched features (Custom Set 1): Iteration 3

Fig. 29: RANSAC (Custom Set 1)

Fig. 30: RANSAC (Custom Set 1): Iteration 2

Fig. 31: RANSAC (Custom Set 1): Iteration 3



RBE/CS549 COMPUTER VISION, P1, SEP 13, 2022 7

Fig. 32: Result (Custom Set 1)

Fig. 33: Results



RBE/CS549 COMPUTER VISION, P1, SEP 13, 2022 8

II. PHASE 2: DEEP LEARNING APPROACH

In this section, the same task is to be implemented using
2 Deep Learning models, Supervised and Unsupervised. The
dataset used for both the models is a small subset of the
MSCOCO dataset containing 5000 images for training and
1000 images for validation. Both the approaches are explained
in detail below.

A. Data generation

We first generate the dataset required for training. In brief, a
random image from the dataset (of 5000 images) is selected.
Then, a random patch from the images is selected, warped
into a random patch, and a perspective transform (H matrix)
between the original patch and the warped patch is calculated.
Using this matrix, and the corner points of Patch A, we
generate the corner points of Patch B. We do this for 7500
random images. Finally, the original image, corner points of
Patch A and B, and the homography matrix for all 7500 images
are stored into a pickle file.

Fig. 34: Model Architecture

B. Supervised Model

We have implemented the same model architecture that
is mentioned in their paper [1]. This model consists of 8
convolution layers and 2 fully connected layers with a softmax
calculated at the end. The input to the model is a stack of
2 grayscale images (PatchA and PatchB) of size 128 x 128
each. Whereas, the output of the model is a vector of size
8 x 1 i.e. the H4pt indicating the difference of 4 corners of
the 2 patches as shown in figure x. The architecture of this
model[1] is shown in figure 34.The Loss function used here
is the standard L2 loss in which, the output of the model
(H4pt) is compared with the ground truth labels. Here, the
labels are the difference of 4 corners of the 2 original patches.
The model parameters used and the loss are stated in table
I. The checkpoints for each epoch are obtained and saved to
use for testing. The plot of training loss over epoch is shown
in figure 35. ADAM Optimizer has been used with a learning
rate of 1e-4.

C. Unsupervised Model

In the unsupervised approach, we utilized the same CNN
architecture as the supervised model. The H4pt, i.e. the model
output, is passed on to the TensorDLT function. The Ten-
sorDLT can be considered similar to the OpenCV function
getPerspectiveTransform. It also takes the corners of the
original Patch A as an input along with the H4pt. The output
of TensorDLT is the 3 x 3 Homography matrix which is
then given as an input to the Spatial Transformer Network

Fig. 35: Loss plot of Supervised

function. We have used the warp perspective function from the
Kornia library for this part. The main differentiating aspect of
unsupervised model from supervised is the loss function. We
do not utilize the labels to calculate the loss. Instead, we are
using a photometric loss function that uses a general warping
function to warp the Patch A and compare it with Patch B.
The Optimizer used is ADAM with a learning rate of 1e-4
same as above. The loss plot over epochs is shown is figure
36.

Fig. 36: Loss plot of Unsupervised

Model Type Epochs Batch
Size

Learning
Rate

Loss

Supervised 10 16 1e-4 0.0136
Unsupervised 10 64 1e-4 0.427

TABLE I: Results.



RBE/CS549 COMPUTER VISION, P1, SEP 13, 2022 9

Fig. 37: Results of Supervised Model Fig. 38: Results of Unsupervised Model



RBE/CS549 COMPUTER VISION, P1, SEP 13, 2022 10

D. Conclusion

1) Supervised: Our conclusion for the supervised part is
that maybe due to generation of random patches used in
the creation of the dataset, the model behaves differently for
different images. The model seems to be overfitting after a
certain point. We were not able to figure out the exact reason
as the loss was not constant over the iterating epochs. The
results for some images seem to be close while for others
they are completely unrelated.

2) Unsupervised: The Loss more or less remains constant
for every epoch due to some reason. This results in a bad
accuracy of the model as we can see from the pictures in figure
38. The predicted homography is not close to the ground truth.
We tried to change parameters, however the results remained
same.

The final transformations i.e. the warping of the images was
not completed, however once the model results are obtained
that part can be also completed.

REFERENCES

[1] DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. ”Deep
image homography estimation.” arXiv preprint arXiv:1606.03798 (2016).

[2] Nguyen, Ty, et al. ”Unsupervised deep homography: A fast and robust
homography estimation model.” IEEE Robotics and Automation Letters
3.3 (2018): 2346-2353.

[3] https://pytorch.org/tutorials/intermediate/spatial transformer tutorial.html



RBE/CS549 COMPUTER VISION, P1, SEP 13, 2022 11

Fig. 39: Detected corners (Train Set 3)

Fig. 40: Detected corners (Train Set 3): Iteration 2

Fig. 41: Detected corners (Train Set 3): Iteration 3

Fig. 42: Matched features (Train Set 3)

Fig. 43: Matched features (Train Set 3): Iteration 2

Fig. 44: RANSAC (Train Set 3)

Fig. 45: RANSAC (Train Set 3): Iteration 2

Fig. 46: RANSAC (Train Set 3): Iteration 3



RBE/CS549 COMPUTER VISION, P1, SEP 13, 2022 12

Fig. 47: Result (Train Set 3)

Fig. 48: Detected corners (Custom Set 2)

Fig. 49: Detected corners (Custom Set 2): Iteration 2

Fig. 50: Detected corners (Custom Set 2): Iteration 3

Fig. 51: Matched features (Custom Set 2)



RBE/CS549 COMPUTER VISION, P1, SEP 13, 2022 13

Fig. 52: Matched features (Custom Set 2): Iteration 2

Fig. 53: Matched features (Custom Set 2): Iteration 3

Fig. 54: RANSAC (Custom Set 2)

Fig. 55: RANSAC (Custom Set 2): Iteration 2

Fig. 56: RANSAC (Custom Set 2): Iteration 3

Fig. 57: Result (Custom Set 2)

Fig. 58: Detected corners (Test Set 3)

Fig. 59: Detected corners (Test Set 3): Iteration 2



RBE/CS549 COMPUTER VISION, P1, SEP 13, 2022 14

Fig. 60: Matched features (Test Set 3)

Fig. 61: Matched features (Test Set 3): Iteration 2

Fig. 62: RANSAC (Test Set 3)

Fig. 63: RANSAC (Test Set 3): Iteration 2

Fig. 64: Result (Test Set 3)

Fig. 65: Detected corners (Test Set 2)



RBE/CS549 COMPUTER VISION, P1, SEP 13, 2022 15

Fig. 66: Detected corners (Test Set 2): Iteration 2

Fig. 67: Matched features (Test Set 2)

Fig. 68: Matched features (Test Set 2): Iteration 2

Fig. 69: RANSAC (Test Set 2)

Fig. 70: RANSAC (Test Set 2): Iteration 2

Fig. 71: RANSAC (Test Set 2): Iteration 3

Fig. 72: Result (Test Set 2)


