
AutoPano, Project-1
Used two late days

Shreyas Kanjalkar
Robotics Engineering Department

Worcester Polytechnic Institute
Worcester, USA

skanjalkar@wpi.edu

Khizar Mohammed Amjed Mohamed
Robotics Engineering Department

Worcester Polytechnic Institute
Worcester, USA

kamjedmohamed@wpi.edu

Fig. 1: Flowchart

I. PHASE1

A. Introduction

The goal of this project is to stitch given images like a
panorama. Each image is made up of pixels, and each pixel
has features. The gist of the project is to find these pixels
which are repeated in the other images, to match the local
features.

B. Data Collection

Each sequence of images should contain at least 3 images,
if not more, and each image should have 30% t̃o 50% overlap.

C. Traditional Approach

The traditional approach is shown in Figure 1, is to detect
corners. Corners are considered as strong features to match
an image. This is because corners have the most change in
gradient. They need not necessarily depict the ”corner” that
we usually interpret. Then we apply Adaptive Non-Maximal
Suppression to those corners, which essentially spreads out the
corners evenly in the image. We then match features using sum
of square distance(ssd) and match only good features using
RANSAC. We then estimate the homography and warp and
blend the image to finally display the output.

D. Corner Detection

We get the corners by using Corner Harris method in cv2.
This gives us corner which are above 1% of the strongest
corner. This gives us certain number of corners.

Fig. 2: ANMS Example

Fig. 3: Feature Matching Example

E. ANMS

In this algorithm, we attempt to find the Nbest corners. We
find the Cornermetric, which is the Corner Score Image(local
maxima). We then iterate through the corners in image, and
compare it with every other point in the image. If another
point has Corner value greater than the current point, then we
take the ssd between those points. We repeat this for all the
points, and sort them by the Nbest ssd in descending order.

F. Feature Descriptor

Now that we have the Nbest corners, we need to describe
each corner with a feature vector. This is called encoding of
the information in each corner by a vector. The process is as
defined in the assignment.

G. Feature Matching

Now we take the corner points in image1 and image2 that
we to stitch. We do a brute force matching between the features
of each point using ssd. We take the ratio of best match with
the second best match, and if it is below a certain threshold,



Fig. 4: RANSAC

Fig. 5: RANSAC

which in our case was 0.9 then we add the pair as a feature
match. I used the BFMatcher() function in cv2, however I had
also implemented it manually. I found that BFMatcher gave
better results than manual, which was surprising. Then I used
cv2,.drawMatches to visaulize it. Figure 3 shows example of
feature matching

H. RANSAC

In feature matching, it can be noted that there are some good
matches, but there are some bad matches as well, multiple
points matching to one point in the next image. We use
RANSAC algorithm to fix this. RANSAC also known as
Random Sample Concensus is used to compute homography
and remove the bad matches. The algorithm is described in
the assignment. When implementing it there were quite a lot
of issues. One such is that homography matrix is a 3x3 matrix
which you get from using cv2.getPerspectiveTransform(). In
order to apply the homography matrix to the entire image to
find the number of inliers, we need to convert the image1
to a w*h*dummy. This ensures that the matrix multiplication
property is satisfied. We then divide the resulting with the
dummy column to normalize it. We then compute the ssd
across transformed image and the old image to find the number
of inliers. The number of inliers are the number of ssd’s less
than user set threshold. I found 1e3 to work really well for
the given sets and customset that I made.We repeat this until
we run out of N iterations or we find some % of inliers. For
set 1, around 70% worked, and for set 2 and 3 I had to reduce
it to 35% for it to work.

I. Blending

For blending we used a third party code. However, it seems
to work well only for up to 3 images. I thought of using pairs
of images to create stitches and repeat this until there is only
one image left. However, the corners in the stitched image

Fig. 6: Final Stitch Example 1

Fig. 7: Final Stitch Example 2

were not as strong and the overlap was not found. I found that
I had to tweak the threshold for each iteration which seems
rather weird. Perhaps some bug in the code. But it works well
for sequences which have 3 images.

J. Custom Set

We tried our algorithm on custom images that we captured
while working, and the outputs are in order shown as feature
matches, ANMS, RANSAC and Final Stitch. We also tried to
stitch the images given in the but we could only stitch the first
set. The rest of the images required a lot of fine tuning, and
a lot noise was being generated or data was being lost when
the images were being stitched, due to introduction of empty
black patches.



Fig. 8: Custom ANMS

Fig. 9: Feature Matching

Fig. 10: RANSAC Custom Set

Fig. 11: Final Output

Fig. 12: Final Stitch for Test Set 1 and 3

II. PHASE2

A. Supervised Learning

1) Data generation: For the patch generation, we are
generating two patches of size 128x128. The first patch is
generated by randomly selecting a point in the image and
making that the top right corner our patch. The second patch
is created by perturbing the four corners of the first patch.
Comparing the corners of the first patch and the perturbed
corners of the second patch, we find the Homography matrix.
We then warp our original image using the inverse of the
Homography matrix. The second patch is then generated form
the newly created warped image, in the same locations as the
first patch. It is important to note that the first patch is selected
in such a way that we try avoiding going out of the picture
area when we warp it. This is achieved by finding the right



Fig. 13: Homography Network architecture

Fig. 14: Homography Network architecture

patch size and the right perturbation maximum. Using a high
perturbation maximum resulted in losing pixels for the second
patch. Therefore we selected a perturbation maximum of 16.
We also select the first patch randomly from an area nearer to
the center of the image. The smaller the patch size the more
freedom we get in random selection of the location of the
patch. However a smaller patch size will not help the network
learn well, since there will be lesser warp seen. Therefore we
settled with a patch size of 128x128. Through this we were
mostly able to avoid losing information from the image when
we warp.

2) Network architecture: Once the two patches are gener-
ated, we stack them together and pass it through our network.
The network we have used is similar to (1). We also use a
4 point parameterized homography called H4pt rather than
the using the actual transformation matrix H which is of 3x3
dimensions. The H4pt matrix is of the form 1x8 and is just the
difference between the corner locations of patch 1 and patch
2. . The network architecture used is similar to VGGNet and is
depicted in Figure 13. The output of this network is a predicted
H4pt. We use a L2 norm loss and we use an adam optimizer.

3) Implementation: In the given code, the GenerateBatch
function does not guarantee it will span the entire data set since
we are randomly picking an image. It is possible that it might
pick the same image, although very unlikely but in order to

Fig. 15: SGD, Overfitting

change that, We used a generator and shuffled the array every
time we are generating the batch to create a random sequence.
This ensures that entire data set is spanned and maintains the
last index it was working with the array.

We were initially trying to run it on a local machine which
has a GTX 1650, but We were running out of memory for
mini batch size of 1 too. In order to fix this, We had to make
few changes to the given code. We modified the network to
not return a dictionary and ran the code on Google Colab. The
ipynb file is also in the code. Please run that file in order to run
the code. This saved a lot of memory as dictionary allocates
extra space because it can contain any type of data set and
since we are only returning the loss from it it, we calculate
the loss from the delta that we get from the model inside the
iteration it self.

We also made some changes to the validation step. We
combined the train and validation data set and instead of doing
training and testing separately for each data set, we randomly
shuffle the data set every time to guarantee randomizing data
set. We then are training 80% of the data and using 20%
of the data to validate the data set. Initially, using the SGD
optimizer, without any weight decay I noticed that the model
was over fitting a lot. This means that there is a lot of noise in
the model. I used AdamW optimizer and added dropout layer
with a probability of 0.1 to the network to try to smoothen the
noise. The results are shown in the plot.

This showed consistency with training and validation loss.
Since they were almost nearly equal after epochs and not
deviating much. So we implemented this model on google
colab with a batch size of 32 for 6000 images. We then tried
to visualize using this model for the test set. However, the
testing showed really weird results as shown in the figure.

B. Unsupervised Learning

1) Data generation: In unsupervised learning we use the
entire Supervised learning implementation. The data genera-
tion and the architecture is the same. However after the neural



Fig. 16: AdamW, no dropout layers

Fig. 17: AdamW with dropout layers

network implementation we have a few additional functions
which help in computing the loss.

2) Architecture: We have used the architecture in (2) in our
project. Figure 18 explains our architecture. As mentioned in
the above paragraph, the architecture used is very similar to
the supervised learning part. In addition we have two more
components called the DLT(Direct Linear Transform) and
STN(SPatial tranformer network).

3) Implementation:
4) DLT: DLT takes in the H4pt we get from the supervised

part and the location of corners from of patch 1 from our data
generation. Using this we calculate the predicted corners of
patch 2. This is then used to calculate the 3x3 Homography
matrix. The authors in (2) discuss a method to calculate the

Fig. 18: Unsupervised network

Fig. 19: Visualization

DLT. Consider the equation x′ = H ∗ x. Here x=[u,v,1] where
u and v are the x and y coordinates of a point. As seen in (2)
we can solve for H in Âi ∗ Ĥ = b̂i. Here are the first 8
elements of H written in a 8x1 shape. i represents the corner
number. In our case i=1,2,3,4. Through this we can solve for
the

Âi =

[
0 0 0 −ui −vi −1 v′iui v′ivi
ui vi 1 0 0 0 −u′

iui −u′
ivi

]

b̂i =

[
−v′i
v′i

]
We noted that the (2) solved for H using auxiliary matrices.

This method requires initializing 10 sets of auxiliary matrices
for this purpose. We have instead used for loops to iterate
through all the instances in the minibatch and iterate through
all the corners.Although easy to implement, this method is
computationally expensive.

5) STN: The spatial uses the output of the DLT, the 3x3 H
matrix and the patch 1 to predict the patch 2. We have used
the kornia library to warp patch 1. Once warped, the photo-
metric loss is computed by comparing the predicted patch and
the actual patch

C. RESULTS

The model that we trained, showed good results for loss in
both training and validation and testing. However, when we
tried to visualize it, we were not able to see the same effect.
We have a strong suspicion that it is trying to learn the wrong
patch and hence it has bad h 4pt. The figure shows the same.
(2)

REFERENCES

[1] D. DeTone, T. Malisiewicz, and A. Rabinovich,
“Deep image homography estimation,” arXiv preprint
arXiv:1606.03798, 2016.

[2] T. Nguyen, S. W. Chen, S. S. Shivakumar, C. J. Taylor, and
V. Kumar, “Unsupervised deep homography: A fast and
robust homography estimation model,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 2346–2353, 2018.


