
Semantic Segmentation
RBE549 HW2

Shiva Kumar Tekumatla
Robotics Engineering Department

Worcester Polytechnic Institute
Worcester, MA, U.S.A.

stekumatla@wpi.edu

Abstract—This document consists of the project implemen-
tation of Semantic segmentation of LIDAR point cloud data.
Since a lot of self-driving cars rely mostly rely on the LIDAR
point clouds, it is essential to differentiate the pseudo-dynamic
obstacles such as cars, to better simultaneous localization and
mapping. In this work, I initially present the data that I am
using for segmentation, followed by the Iterative closest point
implementation for mapping the LIDAR , and then followed by
the segmentation using neural networks.

I. INTRODUCTION

LIDAR data is an essential part of self-driving architectures
for depth sensing. But during the mapping and localization,
apart from point clouds that are generated by LIDAR, a higher
level of semantic information is required. One such example
is differentiating the pseudo-dynamic objects such as cars.
Furthermore, moving cars present a big challenge, making
it difficult to depend on LIDAR-based SLAM. To make the
situation worse, current LIDAR sensors have a very low
vertical resolution, making it hard to detect semantics (labels
of what the objects are). To fix this problem, we can rely on
computer vision to paint the point clouds with semantics. For
this exercise, I am using data from the KITTI360 dataset that
is captured by the SICK LMS 200 laser scanner.

II. DATA

The data that is used for this assignment, follows the
structure given by figure 1.

Fig. 1. Data Tree

This data contains the SICK scans in BINARY format,
defined in the SICK coordinates. Note that the SICK laser
scanner has a higher FPS, thus the frame indices of SICK
scans do not align with those of images or Velodyne scans.
This data is captured by the laser scanners installed at the
poses as given by figure 2.

Fig. 2. Camera Poses

This data also contains the camera calibration data. The cal-
ibration folder contains the intrinsic and extrinsic parameters
of the sensors.

III. BUILDING THE MAP

To build the map, point cloud data from each binary data is
stitched together using the Iterative Closest Point Algorithm
(ICP). For this implementation, I used point-to-plane ICP. The
theory for it is as given below.

A. Point to Plane ICP

The goal of ICP is to align two point clouds, the old one
(the existing points and normals in the 3D model) and the new
one (new points and normals, which we want to integrate into
the existing model). ICP returns rotation+translation transform
between these two point clouds. The Iterative Closest Point
(ICP) minimizes the objective function which is the Point to
Plane Distance (PPD) between the corresponding points in
two-point clouds.

E = Σi||ppd(pi, qi, ni)||2 −→ 0 (1)

Specifically, for each corresponding points P and Q, it is
the distance from the point P to the plane determined by the
point Q and the normal N located in the point Q. Two points

P and Q are considered correspondent if given the current
camera pose they are projected in the same pixel.

p - ith point in the new point cloud q - ith point in the old
point cloud n - normal in the point q in the old point cloud

TO minimize the objective function, we use the Gauss-
Newton method. In the Gauss-Newton method we do sequen-
tial steps by changing R and t in the direction of the function
E decrease, i.e. in the direction of its gradient. At each step, we
approximate the function E linearly as its current value plus
Jacobian matrix multiplied by delta x which is concatenated
delta R and delta t vectors. We find delta R and delta t by
solving the equation Eapprox(deltax) = 0. We apply delta
R and delta t to current Rt transform and proceed to next
iteration

To linearize E , we can approximate it in the infinitesimal
neighborhood. Using R , and t , we can modify E to the
following.

E = Σ||[(R.p+ t)− q]T .n||2 (2)

The output for this mapping is shown below. To speed up the
process, I considered only part of the point cloud data. Figure
?? shows the mapping without transformation, and figure 8
shows with the transformation.

Fig. 3. Mapping of parts of the SICK LiDAR data

Fig. 4. Mapping of parts of the SICK LiDAR data

I could not succesfully make the ICP work for entire data
, Hence I could not rely on this data for Segmentation. For

the segmentatipn part, I used test images from the KITTI360
dataset.

IV. SEMANTIC POINT PAINTING THE MAP

For this exercise , I used
pspresnet101adearchitecture.Andfollowingaretheresults.

Fig. 5. Instance Image input

Fig. 6. Instance Image input

Fig. 7. Instance Image input

Fig. 8. Instance Image input

REFERENCES

[1] https://rbe549.github.io/fall2022/proj/p4/
[2] http://www.open3d.org/docs/release/tutorial/geometry/pointcloud.html
[3] https://github.com/AmrElsersy/PointPainting
[4] https://github.com/ClayFlannigan/icp/blob/master/icp.py

