
Sexy Semantic Mapping RBE549
(Using 1 Late Day)

Tript Sharma
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, MA, 01609

Email: tsharma@wpi.edu

I. INTRODUCTION

Self driving cars often use LIDARs as a central depth
sensing modality. But often during mapping or localization,
higher level semantic information is desired. in this project I
aim to build a map from raw LIDAR point cloud and then
transfer the predicted semantic labels from the camera image
onto the LIDAR point cloud. We will talk about these steps
next.

However translating semantic info from RGB frames at
certain timestamp to the fusedd point will require pose estima-
tion between each LiDAR point cloud. It is easier to perform
semantic segmentation on images and translate them to the
corresponding LiDAR point cloud at that timestamp. Then we
can fuse these point clouds easily using ICP.

Hence the approach I followed is as follows:

1) Parsing Dataseet
2) Semantic Segmentation of RGB Images
3) Point Painting
4) ICP

II. DATASET

In this project, I used the ’CITY’ sub-dataset KITTI dataset
[1]. I used the raw LIDAR point clouds (or scans), rectified
RGB Images and sensor intrinsics and extrinsics.

A. Parsing Dataset

The dataseet contains LiDAR points in ’.bin’ files. I used
Open3D to parse them and visualize the point clouds as shown
in Figure 2 Example of RGB and Velodyne pointcloud are
shown in Figures 1.

Fig. 1. Rectified RGB Image

Fig. 2. velodyne point cloud

III. SEMANTIC SEGMENTATION

I used the FCN model with ResNet 101 backbone for
semantic segmentation available pre-trained on MS-COCO
model containing same classes as PASCAL VOC. The model
is available in torchvision [2]. The architecture for the model
has been presented in Figure 3

All the images were first read into the memory to perform
semantic segmentation.

The model will give each pixel in the image a class label.
Based on this class label, there is a colour associated with
it. The output of this semantic segmentation can be seen in
Figure 4

Fig. 3. FCN architecture for Semantic segmentation

Fig. 4. Segmented image

IV. POINT PAINTING

The goal is to project 3D points from the LiDAR to image
plane. The projected 2D points can be semantically segmented
using the semantic information obtained from the previous
section. Thus, enabling us to ’paint’ the points in the point
cloud.

LiDAR and camera are physically at in different frames and
have different intrinsic parameters. Thus the points cannot be
projected simply by taking it’s projection in the 2D space.

But since we know the geometry between these 2 sensors,
we know the Rotation Matrix R from the Camera to the Lidar
and the Translation vector T from the LiDAR to the Camera.
Thus using Equation 1, I transformed the LiDAR 3D points
into the frame of reference of the camera.

xy
z

 = P


X
Y
Z
1

 (1)

where P is the projection matrix of dimension (3, 4)
After projection the third element of each point gives us

the projected depth in the image. Some points might have
the depth value less tha zero and we neglect those points.
The remaining points are homogenized and projected onto the
image to obtain the corresponding semantic labels.

After obtaining the semantic labels we color the 3D points
using the colors for the corresponding semantic class.

V. ITERATIVE CLOSEST POINT

The painted point clouds are then merged using Iterative
Closest Points algorithm.

ICP is a point cloud registration algorithm that merges two
point clouds. It returns a transformation matrix. We can use
this matrix to align the two point clouds. Dependent upon
the initial transformation, it optimizes the transformation by
iteratively reducing the distance between corresponding points
or a point and plane or other associations depending upon the
ICP method used.

I used Point-to-point ICP method who’s objective function
is to reduce the distance between corresponding points in two
point clouds.

To find correspondences between these points clouds, we do
a simple nearest neighbour approach to each point to obtain
the correspondences.

We then find the best transformation matrix using Equation

E(T) =
∑

(p,q)ϵK)

||p− Tq||2 (2)

where p is the point in target point cloud while q is
the point in source point cloud. Furthermore, T defines the
transformation we want to optimize while K defines the
number of points pairs.

Fig. 5. P2P ICP Result

REFERENCES

[1] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The
KITTI dataset,” The Int. J. Robot. Res., vol. 32, no. 11, pp. 1231–1237,
2013.

[2] https://pytorch.org/vision/0.12/generated/torchvision.models.segmentation.
fcn resnet101.html

