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I. BUILDING THE MAP

The map built based on the first thousand lidar scans is
visualized in Fig. 1. Map points are colored according to
their height. We use the Point-To-Plane ICP implemented in
open3d [1] to estimate relative motion between scans. To do
so, we first need to estimate a plane normal for every point in
the point cloud. 30 nearest neighbors are used to fit a plane
and determine the plane normal. Assume that we have two
surfaces P and Q, and that we have already computed an initial
transformation T0. The Point-To-Plane ICP aims to minimize
the following objective function [2]:
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pi ∈ P is a point on P

ds is the signed distance from a point to a plane.

The Point-To-Plane ICP algorithm is to find the update
transformation T , which minimizes ek in the above equation
with a least squares method iteratively. The algorithm is
described in Algorithm 1. The convergence of the algorithm
is tested by checking

δ =
∥ek − ek+1∥

N ′ ≤ ϵe, (ϵe > 0) (2)

where ϵe is a threshold, N ′(N ′ < N) is the actual number of
p′
is used, since some of them may not have a counterpart in

Q.

Algorithm 1: The Point-To-Plane ICP algorithm
Select a set of control points pi ∈ P (i = 1, . . . , N)

and compute the surface normals npi at those points.
Let T 0 = T0;

foreach control point pi do
Apply T k−1 to both the control point pi and the
normal npi to get p′

i and n′
pi;

Find the intersection qk
i of surface Q with the

normal line defined by p′
i and n′

pi;
Compute the tangent plane Sk

i of Q at q′i;
Find the transformation T that minimize ek in (1)
with a least squares method, let T k = T ◦ T k−1;

end

II. SEMANTIC POINT PAINTING THE MAP

A. Semantic Segmentation

We use the PSA [3] semantic segmentation neural network
for semantic prediction. The network structure is shown in Fig.
2. Given an input image I, its local representation is acquired
through Fully Convolutional Networks (FCN) as feature map
X, which is the input of the PSA module. ResNet [4] is used
as the FCN backbone. The PSA module then aggregates long-
range contextual information from the local representation. It
follows stage 5 in ResNet, which is the final stage of the FCN
backbone.

The PSA network is trained on the Cityscapes Dataset
[5]. The Cityscapes Dataset is a new large-scale dataset that
contains a diverse set of stereo video sequences recorded in
street scenes from 50 different cities, with high-quality pixel-
level annotations of 5,000 frames in addition to a larger set of
20,000 weakly annotated frames. 30 common classes of road,
person, car, etc., are annotated, and 19 of them are used for
semantic segmentation evaluation.

One instance of semantic prediction is given Fig. 3. It can
be see that the predicted semantic segmentation is accurate.

B. Transfer the RGB semantic labels

The lidar points Pv are represented in the Velodyne frame.
To transfer the RGB semantic labels, we first transform the



Fig. 1: LIDAR based mapping. Map points are colored according to their height.

Fig. 2: Network structure of ResNet-FCN-backbone with PSA
module incorporated. [3].

(a) RGB image

(b) Semantic prediction of the RGB image

Fig. 3: RGB image and its semantic prediction

points into the rectified image frame:

Pc = T c
vP

v (3)

Then we project the 3d points into the rectified image frame:

pc = [K | 0]Pc (4)

The semantic label assigned to the 2d projection is then
transferred to the 3d points. Note that apart from requiring the
depth of points in the camera frame to be positive, we also

require the depth to be smaller than 30 meters to be considered
valid. Otherwise, no semantic label is assigned to that point.

The lidar maps colored with RGB data and semantics are
shown in Figs. 4 and 5. In Fig. 4, we can see that the street
view has been reconstructed. In Fig. 5, the corresponding
semantic label has also been appended.
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Fig. 4: LIDAR map colored with RGB image data.

Fig. 5: LIDAR map colored with semantics from the RGB image data.


