
Semantic Segmentation

Aadhya Puttur

I. INTRODUCTION

The goal of this project is to build a map from raw LIDAR
point cloud and then transfer the predicted semantic labels
from the camera image onto the LIDAR point cloud. We will
be using the KITTI-360 dataset as their dataset holds LIDAR
scans and camera images.

II. BUILDING THE MAP

The first step is building a LIDAR point cloud map. For
this task we will be using the classical Point-to-Point ICP.
Iterative closest point (ICP) is an algorithm employed to
minimize the difference between two clouds of points, and
widely used in localization of robot. In an example below,
I have analyzed ICP working on a dataset that involved a
robot scanning a room. The reason we use ICP is because
when taking raw LIDAR data from different poses is very
noisy because it is hard to assume the objects measured by
the LIDAR will stay static. It collects drift quickly because
of it, although we can fix it through a process called scan
matching. The process is through taking a LiDAR scan and
find the transformation that best aligns the new scan with
either previous scans or some sort of abstracted map. Using
the Iterative Closest Point (ICP) algorithm we will align the
newest LIDAR scan with the previous scan.

The ICP algorithm involves 3 steps: association, transfor-
mation, and error evaluation. These are repeated until the
scans are aligned. In this code for example, we were trying
to align the two scans from the robot below 1. The cyan is
the target scan or previous scan and the magenta is the the
new scan. Our goal is to find the best transformation to align
the source with the target.

We know the problem is we don’t know point
correspondence. Intuitively we would know what point
corresponds to what. In code we will perform euclidean
distance to all the nearest neighbor points and pick the
closest one. We basically align the centroids and take the
closest point in Euclidean. In robot odometry we need to
measure the differences between the points to get R and T.
Where there is some function f that is rigid alignment or
SE(3) 2. We mean center and compute the rigid alignment
between two point sets. Then we take the point sets and find
the correlation using dot products which gives us rotation
from taking the SVD.

A. Puttur is with the Department of Computer Science, Worcester Poly-
technic Institute, Worcester, MA 01609, USA (e-mail: aputtur@wpi.edu)

Fig. 1. Two scans that will be aligned with ICP

H = Σpi × qTi
We check if the determinant is valid then we get translation
T = q−Rp. We increment this process over and over again.
We combine the previous rotation and translation with the
new.

argmin[R,T ]Σ(Rpi + T − qi)
2

Fig. 2. For every single point P with a Rotation and translation Value

Fig. 3. ICP Algorithm

With the algorithm 3, we align the scans 5.

Fig. 4. Scans that are aligned using icp



Of course, I’ve realized there are better methods such as
Doppler iterative closest point algorithm when the environ-
ment gets more complicated.

Now that the map is built we need to paint it.

III. SEMANTIC POINT PAINTING THE MAP

A point cloud is a set of 3D points pi ∈ R, which can be
created by different kinds of sensors, such as a lidar scannerA
point cloud can have a RGB value for each point, which
gives us a colored point cloud. To distinguish objects in a
point cloud, a common method is semantic segmentationWe
will be using RGB images to obtain semantic information.
Specifically, we will be using semantic segmentation neural
network to predict the semantic labels on every image frame.
Then we will transfer this information on a map. We will do
this by using the extrinsic between the sensors to transfer
the labels from RGB image to LIDAR point cloud. We
separate the segmentation from building the map so we can
learn to implement both separately and be able to segment
a full 3D LiDAR map. In point painting we are fusing
semantic segmentation results based on RGB images and
add class scores to the raw LiDAR point-cloud. In the first
step we pass the images through a semantic segmentation
network where we receive pixelwise segmentation scores.
Then those scores with the corresponding points are pro-
jected back on the on the LiDAR cloud data. For the image
based semantic segmentation we use mmsegmentation [1]. In

Fig. 5. Segmentation of one image frame using mmsegmentation

semantic segmentation of images, an image is divided into
regions that are classified into one of the pre-defined classes.
mmSegmentation uses convolution neural networks to pixel-
wise label images. The Laplacian Pyramid Reconstruction
and Refinement (LRR) network defines an architecture of a
Laplacian reconstruction pyramid to fuse predictions from
high resolution layers with low resolution layers [2]. First
are the objects categorized in three large macro classes,
foreground and parts. To recognize the different macro
classes, different parts of high-level layers are used.The final
segmentation result by fusing all the segmentation from the
different levels, which finally outputs scores for each class
for each pixel in the image.

Now that we can segment images frame by frame, we
just need to be able to project them on the LiDAR point
cloud data. We know that the pinhole camera is defined
as C = K[R, T ] where R is the rotation matrix, T is
the translation, and K is the intrinsic camera matrix. We
design an operation to propagate external image labels to
point clouds called “Search based Superpixel Labeling”

[3]. We first use Mean Shift to segment individual images
into “superpixels”, and then propagate their labels onto the
visually similar superpixels in the reference images of point
clouds by using Exemplar SVM. We first directly find the k
nearest neighbors in S. S is the external superpixel labeling
pool consisting of superpixels with ground truth labels 6.
Sq represents superpixels to be labeled in the reference
images.

With this equation we can find the top k superpixels with
the least euclidean distance D from Sq . For every superpixel

Fig. 6. Find the most similar superpixels in given label

extracted from the labeling pool Si ∈ S, we train a linear
SVM to identify its visually similar super pixels ??. To
further guarantee the matching robustness, every superpixel
Si is translated and rotated to expand to more positive
examples for training. To label the superpixel Sq in the
reference images, wefind the superpixels with the k strongest
responses as its k nearest neighbors in Si 7.

Fig. 7. label super pixels to their reference images

First the point cloud is segmented, producing a 3D seg-
ment set Di. Second, with the transform matrices Mi from
local 2D coordinates in reference images Ii

R
i=1 to the global

3D coordinates, segments in Di are matched to the reference
images, each resulting in a 2D region SMj (Di). If this
projected region shares enough portion with some superpixel
Si from this reference image, we connect an edge between
Si and SMj (Di) 8.

Fig. 8. superpixel labeling pool

1) https://github.com/open-mmlab/mmsegmentation
2) https://liu.diva-portal.org/smash/get/diva2:1091059/FULLTEXT01.pdf
3) https : //www.ee.columbia.edu/ln/dvmm/publications/13/cvprpclabel.pdf
4) https : //github.com/vobecant/pix2pixHDrndinsertion.git



Fig. 9. label 3D point cloud

5) https : //github.com/dtczhl/dtc−KITTI − For −
Beginners

6) http : //andrewjkramer.net/tag/slam/

REFERENCES


