Sexy Semantic Mapping.

Venkatesh Mullur
Robotics Engineering Department,
Worcester Polytechnic Institute,
Worcester, MA, USA.
vmullur @wpi.edu

I. INTRODUCTION

In Structure from motion, the goal was to find 3D depth
using either a monocular camera from different poses or from
a stereo camera; the goal of Visual Inertial Odometry was to
combine camera shots and the readings of the IMU sensor.
VIO was used to perform localization and mapping using a
variant of the Extended Kalman Filter called MSCKF. We
know that Lidar (Light Detection and Ranging) is a remote
sensing technology that uses laser beams to measure the
distance to objects and generate high-resolution 3D point
clouds of the environment. Point clouds are sets of points in
3D space that represent the shape and surface characteristics
of an object or environment. They are commonly used in
computer vision, robotics, and 3D modeling to represent 3D
data and can be generated using a variety of techniques, such
as 3D scanning, photogrammetry, or lidar (Light Detection
and Ranging). The main goal of this project is to use a
camera to sfor semantic segmentation and project it on the
point cloud to see a semantic segmentation of the point cloud.
Semantic segmentation is the process of labeling each pixel
in an image with a class label, such as “car,” “road,” or
“building.” By combining the data from a camera and Lidar,
you can potentially use both the color information from the
camera and the depth information from the Lidar to improve
the accuracy of the semantic segmentation. Once you have a
segmented point cloud, you can use it to perform various tasks
such as object recognition, localization, and mapping. These
techniques can be useful in a variety of applications, such as
autonomous vehicles, robotics, and 3D modeling.

II. BACKGROUND

Segmenting point clouds can indeed be challenging due
to the lack of color information and the complexity of the
data. One approach to improve the accuracy of point cloud

segmentation is to use multiple sensors, such as both a Lidar
and a camera, to capture complementary information about

the environment. By combining the data from these different
sensors, it can be easier to segment the point cloud and
accurately identify different objects.

One way to combine the point cloud data with image data is
to use a projection method. This involves projecting the point
cloud onto the image plane and using image segmentation
techniques to classify the points in the projected point cloud.
This can be useful if the image has a higher resolution or if

the image data is easier to process due to the presence of color
information.

Another approach is to use a registration method to align
the point cloud and image data. This involves finding the
transformation that aligns the two data sets and applying it
to the point cloud. This can be useful if the point cloud has a
higher resolution or if the point cloud data is easier to process
due to the presence of depth information.

Ultimately, the choice of approach will depend on the
specific application and the characteristics of the data being
used.

III. BUILDING THE MAP

o The Kitti-360 dataset is a collection of Lidar and camera
data collected from a 360-degree Lidar sensor mounted
on a moving vehicle. It is commonly used for evaluating
algorithms for tasks such as 3D reconstruction, semantic
segmentation, and object detection.

e To build a map using this dataset, you will need to
process the raw point cloud and camera data to extract
relevant information about the environment. This can
involve tasks such as point cloud segmentation, image
segmentation, and registration to align the data from the
different sensors.

Fig. 1. Point Cloud at Time instant "t”

e Once you have processed the data, you can use it to
generate a 3D map of the environment. This can involve
techniques such as SLAM (Simultaneous Localization
and Mapping) to estimate the pose of the vehicle and
build a map of the surrounding environment. You can
also use the segmented point cloud data to identify and

classify different objects in the environment, such as cars,
pedestrians, and buildings.

Overall, building a map using the Kitti-360 dataset can
be a challenging task since it is a very big dataset and
the scope of this project needs only “Perspective Images
for Train and Validation” and ”"Raw Velodyne Scans”.
Figure 1 shows the point cloud at a given time instant
”t”. Similarly, figure 2 shows the next point cloud. When
extracting information from the point cloud, I could see
that the point cloud contains information such as spatial
location, intensity, and distance from the camera.

Every point cloud was in the form of .bin and had
to be converted into a point cloud using the Open3D
library. Each point cloud contains around 150,000 points
with the above-given information. We need to find point
correspondences between the adjacent point clouds. For
the same, this project uses the ICP or the Iterative Closest
point algorithm.

Fig. 2. Point Cloud at Time instant "t+1”

 ICP, or Iterative Closest Point, is an algorithm for aligning
two point clouds by minimizing the distance between
corresponding points in the two clouds. It is widely used
in computer vision and robotics for tasks such as object
recognition, localization, and mapping.

In the open3D library, ICP is implemented as a func-
tion that takes two input point clouds and returns the
transformation that aligns the two clouds. The function
iteratively adjusts the transformation based on the dis-
tance between corresponding points in the two clouds,
until the alignment error is minimized. The function also
provides various options for controlling the optimization
process, such as the maximum number of iterations and
the convergence threshold.

There are several variations of the Iterative Closest Point
(ICP) algorithm, each with slightly different optimization
objectives and techniques. Some common types of ICP
include:

1) Point-to-Point ICP: This is the most basic form
of ICP, in which the objective is to minimize the
distance between corresponding points in the two
point clouds.

-3

2) Point-to-Plane ICP: This variant of ICP minimizes
the distance between points in one cloud and the
nearest plane in the other cloud. This can be useful
for aligning point clouds that represent surfaces,
such as 3D scans of objects.

3) Point-to-Surface ICP: This variant of ICP minimizes
the distance between points in one cloud and the
nearest point on a surface in the other cloud. This
can be useful for aligning point clouds that represent
more complex shapes, such as 3D scans of objects
with curved surfaces.

4) Robust ICP: This variant of ICP uses robust esti-
mators, such as the RANSAC algorithm, to handle
outliers and noisy data. This can be useful for align-
ing point clouds that contain a significant amount of
noise or errors.

Overall, the choice of ICP variant will depend on the
specific application and the characteristics of the point
cloud data.

With the use of ICP, we basically get the transformations
between the adjacent point clouds which can be registered
or aligned to a particular point cloud. Figure ?? shows
the output of ICP and shows what the map looks like.

> llp - Tq? (1)

(p,9)eX

E(T) =

In the above equation, p and ¢ are point clouds and T
is the transformation from ¢ to p. Iteratively, this error is
to be minimized in such a way that they align with each
other. This method is called pointtopointIC P

1 % 1 M
Be=-—2 %i and Hp=-— > P
Ne =1 NP i=1

Fig. 3. Calculating the centroid of data

-4 Moved data centered .. .g
@ Tue data centered . .
L] e,
3 °
.
]
g o.g
o " e
®e .
.._. L LI o
soce, Pl B A
oot o
* . [] .
’ .8
[] L
..
*®
9
-
L]
»
L)

Fig. 4. How to make data centered

Once the data is centered, from each point in the true
data is taken and found the correspondences by using the
equation 1 and the radius is predecided.

-4 P centered
1p | ~®@ Qcentered
worrepondences

-3

Fig. 5. How to make data centered

o The point correspondences are shown in figure 5 and
Iteratively it is transformed in the frame of the true
as shown in figure ??

@ Prinal
-® Q
75
5.0 ...
® ®
25 .'.... o
® o]
00 fe) ° @ o ® .
Cco0
25 e L o
0g9
50
-15

Fig. 6. How to make data centered

o Since the data is super large, this project takes use of
only the first 100 samples of both Point clouds and the
images. The output of ICP on the dataset is shown in the
figure below.

IV. SEMANTIC SEGMENTATION

There are many semantic segmentation neural networks
that you can use to predict semantic labels on each image
frame. Some popular options include Fully Convolutional
Networks (FCN), U-Net, and SegNet. These networks are
trained on large datasets of annotated images and are able to
predict the class label of each pixel in an image.

To transfer the semantic color labels from the RGB images
to the Lidar point cloud, we can use the extrinsics between the
sensors to project the labels onto the point cloud. Extrinsics
refer to the transformation that aligns the coordinate systems
of two sensors, such as a camera and Lidar. By using the
extrinsics, you can transform the image coordinates to the
Lidar coordinate system and apply the semantic labels to the
corresponding points in the point cloud.

To do this, this project uses a registration method to align the

Fig. 7. Point Cloud After performing ICP

data and then apply the semantic labels to the point cloud.
Once we have a segmented point cloud, we can use it to
perform various tasks such as object recognition, localization,
and mapping. These techniques can be useful in a variety of
applications, such as autonomous vehicles, robotics, and 3D
modeling.

1) To perform semantic segmentation, the project has taken
help of DeepLabv3Plus-Pytorch which has pre-trained
networks.

2) Specifically the project uses deeplabv3_resnet101.

3) Transferring the RGB colors from the images to the
Lidar point cloud can be a useful way to validate the
transformation operation and check that the alignment
between the data is correct. If the transformation is ac-
curate, you should see that the RGB colors are preserved
in the point cloud and that the colors of different objects
are distinct and do not blend into each other.

4) For example, if you have a red car in the image, you
should see that the points in the point cloud correspond-
ing to the car are colored red and do not blend into the
colors of other objects in the scene. Similarly, if you
have a green tree in the image, you should see that the
points in the point cloud corresponding to the tree are
colored green and do not blend into the colors of other
objects in the scene.

Fig. 8. Image in the dataset

Step 1:

Step 2:

Step 3:

Step 4:

Fig. 9. Original Image, Segmented Image and the point cloud fused

5) By checking the RGB colors in the point cloud, you
can ensure that the transformation operation is working
correctly and that the alignment between the data is
accurate. This can be useful for ensuring the quality of
the segmented point cloud and for verifying the accuracy
of the semantic labels applied to the point cloud.

Transformation of raw depth values into meters

depth = 1.0/ (Fawgep, x —0.0030711016 +3.3309495161)

the segmentation.

(&)

Mapping depth pixels from depth image coordinates [x;,y4]” to depth camera coordinates [X4, ¥y, Z4)”

Xa = (xg —cxq) x depth(xq,ya)/ fxa
Ya = (ya —cya) x depth(xd,ya) / fya
Zq = depth(xq,yd)
Transform point clouds from depth camera coordinates Xgq to color camera coordinates Xggp

XRGB =R! 4Xd7R_l -T

6
@]
®)

(©)]

Mapping point clouds from color camera coordinates Xggp to color image coordinates [Xggp, Yran]”

xrGe = (Xrae X fxrGB/ZrGB) + cXRGB

Vreb = (Yras X fyrRGB/ZRGB) + CYRGE

(10)
an

Note: After projecting to color image coordinates, xggp and yrgg must be rounded to (1, 640) and (1,

480) respectively.

Fig. 10. Equations utilized to transfer the RGB semantic labels onto the
LIDAR point cloud

One of the data images is given in figure 8 and the segmented
figure is shown in figure 9.

Once the segmentation is done, then the project takes the
help of GitHub to project the segmented images to the point
cloud and then reprojects the color to the point cloud. After
segmentation of the point cloud, ICP is used again to get a
full segmented map which is given in figure 11

One way to improve the robustness of the segmentation is to
use more image and point cloud frames. This can provide the
algorithm with more data to work with, which can improve
the accuracy of the segmentation. Additionally, using more
frames can help to capture a wider range of viewpoints and
lighting conditions, which can also improve the robustness of

Fig. 11. Final Output

Fig. 12. Final Output

(1]
(2]

(3]
(4]
[3]
(6]

REFERENCES

https://www.cvlibs.net/datasets/kitti-360/download.php
https://github.com/VainF/DeepLabV3Plus-

Pytorch/blob/master/
http://www.open3d.org/docs/release/tutorial/pipelines/icp_registration.html
https://www.youtube.com/c/CyrillStachniss ?app=desktop
https://github.com/naitri/PointPainting
https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/tr98-71.pdf

