
RBE/CS549: Homework 2
LIDAR Semantics

Mihir Kulkarni
MS, Robotics

Worcester Polytechnic Institute
Email: mmkulkarni@wpi.edu

Abstract—This project is an implementation of ICP to build
and stitch point cloud map. We also perform fusion of RGB data
from the cameras and the generated Point cloud map in order to
have a better understanding of the scene. Fusing the data from
lidar and camera sensors can be useful for a variety of tasks,
including localization, mapping, and object recognition. In the
second part of the project, we perform semantic segmentation
of RGB images using deep learning and project the segmented
colors onto the Point Cloud map.

I. BUILDING THE MAP USING ICP

We use the KITTI 360 dataset for this project which
contains raw LIDAR scans, RGB image information, and
camera intrinsics as well as extrinsics. The LIDAR scans are in
the format .bin. We have to first convert them into .pcd format
in order to make use of Open3d functions for calculating
transformations between point clouds and combining them.
Once we get the point clouds in the .pcd format, we perform
Point-to-Point Iterative closest point algorithm (ICP) to stitch
them. ICP is an algorithm for aligning two point clouds
by minimizing the sum of squared distances between the
corresponding points in the two clouds.

In Point-to-Point ICP, the distance between the two points
defined by a set of corresponding points is minimized.

To find the optimal transformation, the ICP algorithm iter-
atively performs the following steps:

Initialize the transformation between the two point clouds.
This can be done randomly, or by using some prior information
about the relative orientation of the two point clouds. For
each point in the first point cloud, find the closest point in
the second point cloud. Use the correspondences between the
points in the two point clouds to compute a new transformation
that aligns the point clouds. Iterate until the transformation
converges or a maximum number of iterations is reached.

Repeat the above steps until the transformation converges
(i.e., the sum of squared distances between the points in the
two clouds stops decreasing).

I have used the Open3d point cloud library to perform the
Point-to-Point ICP of 10 selective images from the KITTI 360
vision dataset. The input .pcd files are the converted ones from
the .bin files as given in the dataset.

The output of the ICP is as follows:

Fig. 1: Point-to-Point ICP

Fig. 2: Point-to-Point ICP

II. SEMANTIC SEGMENTATION OF RGB IMAGES

Semantic segmentation involves assigning a semantic label
to each pixel in an image. In the case of RGB (red-green-blue)



images, the semantic label indicates the class or category to
which the pixel belongs.

A. Network Architecture - BiSeNetv2

To perform Semantic segmentation on the same 10 images
taken from the dataset, I have used the popular BiSeNetv2
model that works on the encoder-decoder network architecture.
The input images to the network are RGB images of size
(1242, 375).

The archietcture of BiSeNetv2 is shown in the figure below:

Fig. 3: BiSeNetv2 architecture

B. Projecting semantic labels on the PointCloud

The last part is to project these detected semantic labels
on the PointCloud of the 10 images combined. This is also
called as Point Painting. We first use the extrinsic parameters
(i.e., the rotation and translation) to transform the 3D points
computed from the ICP map into the coordinate frame of the
RGB sensor. Then, we can use the intrinsic parameters of each
sensor to project the transformed 3D points onto the image
planes of the RGB and IR sensors.

It’s worth noting that this process will only work if the point
cloud and the RGB image have sufficient overlap and if the
extrinsic and intrinsic parameters of the camera are accurately
known. If there are any discrepancies in these parameters,
the resulting point cloud may not align correctly with the
image. For each pixel in the semantic segmented image,
find the corresponding 3D point in the point cloud using
the intrinsic parameters of the RGB camera. The intrinsic
parameters describe the internal geometry of the camera, such
as the focal length and principal point.

The final output after projecting the semantic labels on the
point cloud map, we get the following:

Fig. 4: Semantic Segmented Point Cloud

Fig. 5: Semantic Segmented Point Cloud

Fig. 6: Semantic Segmented Point Cloud

REFERENCES

[1] https://github.com/AmrElsersy/PointPainting
[2] https://github.com/naitri/PointPainting



Fig. 7: Semantic Segmented Point Cloud

Fig. 8: Semantic Segmented Point Cloud

Fig. 9: Semantic Segmented Point Cloud

[3] https://www.cvlibs.net/datasets/kitti/evalobject.php?objbenchmark =
3d

Fig. 10: Semantic Segmented Point Cloud

[4] https://chat.openai.com/chat


