HW2: Sexy Semantic Mapping
RBES549

(Using 1 late day)

Karter Krueger
Department of Robotics Engineering
Worcester Polytechnic Institute
Worcester, MA 01609
Email: kkrueger2 @wpi.edu

I. AUTOCALIBRATION

Nearly all self-driving cars use LiDAR for mapping and
localization. However, when running SLAM or localization
methods, there are some points in the LiDAR point-cloud
that are less-desirable to consider in the localization, such
as moving vehicles and people. To reduce localization noise,
we ideally want to use fixed points such as trees and other
landmarks along the sides of the road. This is one big
motivation to fuse semantics with the point-cloud data in
this homework. Another motivation is that self-driving cars
must pay special attention to moving objects such as cars and
people. But adding semantics to point-cloud data, we can spot
these classes of objects and perform differently around them.

For background, ICP (Iterative Closest Point) is a method
used for mapping with LiDAR points and for SLAM (Simul-
taneous Localization And Mapping) on LiDAR point cloud
data to localize the self-driving car while it drives along the
road, while also building a map of the surroundings. In this
homework, we will use an existing ICP method to match the
LiDAR points between frames to build a map.

For additional background, semantics can be determined us-
ing RGB images and a semantic-segmentation neural-network
method. In this homework, we will use an existing pre-trained
semantic segmentation neural-network to extract semantic
class labels from RGB images. We will then write the math
and functions to project the pixel classes from (u,v) space to
the 3D XYZ space of the LIDAR. We can then find the nearest
color/class for each LiDAR point and color it on a 3D map.

A. Step 1: ICP Mapping

In this homework, we use a standard ICP method [1], from
this pip library [2]. This library can take in two 3D point
clouds and find the correspondences between them with the
nearest matches for each point, and the transformation between
the two frames. We can then use these transformations to shift
the point cloud from each frame and merge them all into one
large map. Below is an example of a map that was displayed in
the homework outline. (my code isn’t at the point of running
ICP yet)

Fig. 1.

Example map from the HW

B. Step 2: Semantic Segmentation

We use DeepLabV3 (already available in Pytorch) with
weights that have been trained on the KITTI dataset that we
are using for LiDAR and RGB data in this homework. For
each RGB image, we pass the frame into the DeepLabV3
semantic segmentation neural-network model in pytorch and
get a semantically-segmented image of the same size out.
Each output frame has a class of highest likelyhood of object
assigned to each pixel. We represent the classes with colors
such as green, purple, blue, etc for classes such as tree, road,
car, etc. An example of a semantic segmentation output 3 of
an RGB image 2 is shown below.

Fig. 2. RGB Input Image from KITTI Dataset

C. Step 3: Project 2D Image Values to 3D LiDAR Points

We can project the semantic labels from the image space to
their 3D ray space using the intrinsic camera matrix /. We
can then use the extrinsic relation between the camera and
LiDAR to shift the rays to be aligned with the LiDAR center.
We can then take the rays and find the nearest ray to each



Fig. 3. Semantic Result of the RGB Image

LiDAR point. This semantically-labeled point cloud can then
be visualized like the original point cloud.

D. Results

Note: the provided code does not run with the Kitti dataset
due to challenges with downloading the large files and getting
things to load properly. However, the code does demonstrate
the full flow of how things should work if the data was working
correctly.

REFERENCES

[1] https://en.wikipedia.org/wiki/Iterative_closest_point
[2] https://pypi.org/project/simpleicp/



