
HW-2: Sexy Semantic Mapping
Shreyas Kanjalkar

Robotics Engineering Department
Worcester Polytechnic Institute

Worcester, USA
skanjalkar@wpi.edu

I. INTRODUCTION

Self driving cars often use LIDARs as a central depth
sensing modality. But often during mapping or localization,
higher level semantic information is desired. One such cases is
when parked cars drastically reduce what the car sees in-terms
of features, thereby making it hard for localization or mapping.
You would end up mapping the cars instead of buildings. These
are called pseudo-dynamic obstacles. Furthermore, moving
cars present a big challenge, making it hard for LIDAR based
Simultaneous Localization And Mapping (SLAM) systems
to reject these objects from becoming mapping artifacts. To
accelerate the situation further, current LIDAR sensors have
very low vertical resolution, making it hard to detect semantics
(labels of what the objects are). To this end, experts in the field
of robotics and computer vision decided to combine LIDAR’s
with cameras to obtain a semantic painted point cloud. The
goal is to build a map from raw LIDAR point cloud and then
transfer the predicted semantic labels from the camera image
onto the LIDAR point cloud.

II. DATA

The data used in this data set is from the KITTI-360
dataset. We only used part of it, and only the raw LI-
DAR point clouds, RGB images and sensor intrinsic and
extrinsics. Specifically, the dataset used for this project is
2013 05 28 drive 0000 sync which contains 11,518 images
and their corresponding binary files of point cloud.

III. APPROACH

The pipeline for this homework invovles two key steps:
1) Building the Map using classical methods (ICP)
2) Semantic Point Painting the Map

IV. BUILDING THE MAP

As we are allowed to utilize any third party ICP Point to
Point or Point to Plane. I considered both of them, but noticed
that point to point worked much better than point to plane. The
math for both of them is shown in the next subsections

A. Point to Point ICP

The Iterative Closest Point (ICP) algorithm is a method
for aligning two point clouds, which are collections of 3D
spatial data points. The goal of the algorithm is to find the
transformation that best aligns one point cloud with another.
The ICP algorithm operates iteratively, meaning it performs a

Fig. 1: KD-Tree algorithm

series of steps repeatedly until the desired level of accuracy or
convergence is achieved. Specifically, the algorithm initializes
the transformation between the two point clouds and then, for
each point in the source point cloud, it identifies the closest
point in the target point cloud. The transformation that aligns
the points in the source point cloud with the closest points in
the target point cloud is then calculated and used to update
the overall transformation between the two point clouds. This
process is repeated until the transformation between the two
point clouds converges to the desired level of accuracy.

The point to point ICP is explained as following in [1]:

1) Find correspondence set κ = (p, q) from target point
cloud P and source point cloud Q transformed with
current transformation matrix T.

2) Update the transformation T by minimizing an objective
function E(T) defined over the correspondence set κ.
The objective function is given as:

E(T) =
∑

(p,q)∈κ

||p− Tq||2

3) The initial transformation matrix is a 4x4 is a matrix
with random values. The ICP values over a certain num-
ber of iterations optimizes the Transformation matrix to
find the best fit for the two point clouds. In a way, it
can be seen as how we used to calculate Homography
matrix, except there we used to choose 4 random points
and applying RANSAC to find the best fit. In here we
also find the best fit over a certain number of iterations.

4) Zhang et al[2] proposed a K-D tree approach for efficient
computation of the point clouds and transformation. The
pseudo code for the algorithm is shown below:

Fig. 2: Point cloud between frames using ICP

B. Point to Plane ICP

The goal of ICP is to align two point clouds, the old one (the
existing points and normals in 3D model) and new one (new
points and normals, what we want to integrate to the exising
model). ICP returns rotation+translation transform between
these two point clouds.

The Iterative Closest Point (ICP) minimizes the objective
function which is the Point to Plane Distance (PPD) between
the corresponding points in two point clouds:

E = Σi||ppd(pi, qi, ni||2 → 0

where ppd(p, q, n) means that for each corresponding points
P and Q, it is the distance from the point P to the plane
determined by the point Q and the normal N located in the
point Q. Two points P and Q are considered correspondent
if given current camera pose they are projected in the same
pixel.
p - ith point in the new point cloud q - ith point in the old

point cloud n - normal point q in the old point cloud
Therefore ppd(...) can be expressed as the dot product of

(difference between p and q) and (n):

dot(Tp2q(p)− q, n) = dot ((R.p+ t)− q, n)

= [(R.p+ t− q]
t
.n

where T(p) is the rigid transform of point p:

Tp2q = (R.p+ t)

where R - Rotation and t - translation.
T is the transform we search by ICP, its purpose is to bring

each point p closer to the corresponding point q in terms of
point to plane distance. In order to minimize the objective
function, the Gauss-Newton method for local minimization.

In the implementation I used the open3d documentation,
where they have given the point to plane implementation.

Fig. 3: Point cloud of the next two frames

V. ISSUES

When I tried to build the map, my logic was as follows.
Find the transform between Frame 0 and Frame 1 using ICP
and convert the points from Frame 0 to Frame 1. Now these
points that are from Frame 0 in respect to Frame 1 plus the
points of Frame 1 will be combined and multiplied with the
Transformation matrix between Frame 1 and Frame 2. All
the points were not being saved on a global scale, instead
they were always local and all the paths are always therefore
with respect to the origin. I believe my logic is correct, but
there were some implementation issues. Here is the logic in
mathematical terms:

((P0 ∗ T0 + P1) ∗ T1 + P2) ∗ T2....

This will give the final point cloud with all the points and
which can be used to plot the map.

VI. SEMANTIC POINT PAINTING THE MAP

Now, utilizing the image we want to paint the image. Since
we are allowed to use any third party semantic segmentation
neural network to predict the semantic labels on every image,
I used the one linked by AmrElsersy. Using the pretrained
network, which is the BiSeNetv2 model. It is trained on KITTI
dataset using TensortRT inference. I was not able to generate
results on my original images that I got from the ICP, but I was
able to run the code for the dataset that was provided by the
person (which is the same dataset, just gives direct coloring
instead of using the classical method). The results are shown
in figure below:

A. BiSeNet

The network used in this is the BiSeNet. The authors
propose a Spatial path to preverse the spatial size of the
original input image and encode affluent spatial information.
The Spatial Path contains three layers. Each layer includes a
convolution, followed by batch normalization and ReLU. This
path extracts the output feature maps that is 1/8 of the original

Fig. 4: BiSeNet architecture

image. Encoding seems to be the name of the game for deep
learning paper since 2020s, to produce better results.

The authors also talk about Context path, to provide a
sufficient receptive field. The context path utilizes lightweight
model and global average pooling to provide large refceptive
field. The lightweight model can downsample the feature map
fast to obtain large receptive field, which encodes high level
semantic context information. Then a global average pooling is
added on the tail of the lightweight model, which can provide
the maxiumum receptive field with global context information.
The reason why there is a U shape in Figure 5, is because of
the combination of unsampled output feature of global pooling
nad features of the lightweight model.

B. Network Architecture

The BiSeNet architecture is shown in figure below. The
most important takeaway from the architecture are two things,
one is the Feature fusion module and Loss function. Let us
talk about them.

• Feature fusion module: The features of the two
paths(Spatial Path and Context Path) are different in level
of feature representation. As they are in different repre-
sentation, it is impossible simply sum them. Given the
different level of the features, the authors first concatenate
the output features of Spatial Path and Context Path. Then
they utilize the batch normalization to balance the scales
of the features. Now there is a set of combined features,
where pooling of concatenated feature to a feature vector
and compute a weight vector. This weight vector is used
to re-weight the features.

• Loss function: The principal loss function is used to
supervise the output of BiSeNet. The authors also add two
specific auxilary loss functions to supervise the output of
context path. All loss functions are Softmax loss. The
equation is given as:

loss =
1

N

∑
i

Li =
1

N

∑
i

−log

(
epi∑
j e

pj

)

where p is the output prediction of the network.

Fig. 5: Caption

• The authors also use a parameter α to balance the weight
of the principal loss and auxiliary loss. The joint loss
makes the optimizer more efficient.

L(X;W) = lp(X;W) + α

K∑
i=2

li(Xi;W)

where lp is the principal loss of the concatenated output,
Xi is the output feature. li is the auxiliary loss. The joint
loss is denoted by L

VII. REFERENCES

1 Open3D
2 Zhang, Zhengyou (1994). ”Iterative point match-

ing for registration of free-form curves and sur-
faces”. International Journal of Computer Vision.
doi:10.1007/BF01427149

3 Wikipedia
4 P. J. Besl and N. D. McKay, ”A method for registration

of 3-D shapes,” in IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 14, no. 2, pp. 239-256,
Feb. 1992, doi: 10.1109/34.121791.

5 Changqian Yu et al. ”BiSeNet: Bilateral Segmenta-
tion Network for Real-time Semantic Segmentation”
https://arxiv.org/abs/1808.00897

http://www.open3d.org/docs/release/tutorial/pipelines/icp_registration.html
https://en.wikipedia.org/wiki/Iterative_closest_point#cite_note-zhang_IJCV_1994-4

	Introduction
	Data
	Approach
	Building the Map
	Point to Point ICP
	Point to Plane ICP

	Issues
	Semantic Point Painting the Map
	BiSeNet
	Network Architecture

	References

