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Abstract—In this paper, we implement two concepts. First, we
use semantically segmented images to paint the corresponding
point clouds. Second, we use the painted point clouds from
various consecutive timestamps and combine them together
using the Iterative Closest Point Algorithm. The results and
observations of the above implementations have been recorded.

I. INTRODUCTION

In case of self-driving cars, LiDARs are used to sense the
depth objects in the environment in the form of point cloud,
for the ego vehicle. However, during localization and mapping
using LiDAR information, the static vehicles can end up being
considered as building artifacts. Therefore, higher level of
semantic information is required for LiDAR based SLAM. In
addition to this, LiDAR don’t have sufficient vertical resolution
to detect objects and their labels. Moreover, the sparsity and
the huge number of unorganized points in a 3D point cloud
data cannot be used for semantic segmentation. To resolve
this issues, experts in the field combined LiDAR and camera
information to create semantic painted point clouds. [1]

II. DATA
The data we have used is the part of the KITTI-360 data

set [2]. It consist of 31 consecutive scans of the LiDAR
point cloud and the corresponding 2D images. We also have
calibration information of all the cameras and the velodyne
LiDAR. An example of the image and the corresponding 3D
point cloud data are shown by figures 1 and 2, respectively.

Fig. 1. The original rgb image part of the sampel the data.

III. METHODOLOGY
The painting point cloud method has been implemented in

the following steps:
• Image semantic segmentation
• Semantic mapping of point clouds
• Building entire Map

Fig. 2. The 3d point cloud data corresponding to figure 1 in the image
perspective.

Fig. 3. The full 3d point cloud data corresponding to figure 1.

A. Image Semantic Segmentation

Semantic segmentation is an image analysis procedure in
which we classify each pixel in the image into a class. In
simple terms, segmentation helps detect objects in a image and
label them accordingly. In autonomous driving, the computer
driving the car needs to have a good understanding of the road
scene in front of it. It is important to segment out objects such
as cars, pedestrians, lanes and traffic signs [3].

We have used pre-trained Pyramid Scene Parsing Res-
Net101 model to implement semantic segmentation on the
source rgb images in our data. The model we used have
weights trained on the cityscapes dataset. The segmented
output images are stored in a separate folder to be used for
painting the point clouds. The following figure 4 shows the
actual rgb image on the top and the corresponding segmented
output in the bottom.



Fig. 4. RGB image (TOP) and corresponding segmented output(BOTTOM).

B. Semantic mapping of point clouds

In this step, we are going to project the points in the point
cloud to the image plane and based on the segmented values
in the image, we are going to paint the points and then project
the point cloud back into 3D space. This process is repeated
for all the 31 images and their corresponding point clouds.
The following are the steps in the semantic mapping process.

1) Project of Point Clouds to Image: The calibration file
contains the values of 7 matrices:

• P0 - projection matrix for a point in the rectified refer-
enced camera coordinate to the camera0 image

• P1 - projection matrix for a point in the rectified refer-
enced camera coordinate to the camera1 image

• P2 - projection matrix for a point in the rectified refer-
enced camera coordinate to the camera2 image

• P3 - projection matrix for a point in the rectified refer-
enced camera coordinate to the camera3 image

• R0 rect - rectifying rotation for reference coordinate
• Tr velo to cam - maps a point in point cloud coordinate

to reference co-ordinate

The the corresponding (x,y) image co-ordinate of the point
cloud from the velodyne frame can be calculated as follows
[5]:

y image = P2 ·R0 rect · Tr velo to cam · x velo coord

2) Painting the point clouds: The colours in the semanti-
cally segmented images are scaled down from 0-255 to 0-1.
After this step, we then create a list of all the colour-labels
for each pixel in the image. Using the open3d library, we will
map each point with the corresponding colour values from
the segmented pixel and stored in to a new variable. This
new variable has information of the point cloud data along
with the colour code. After this the semantically mappe point
cloud data is stored in a separate file. The figure 5 shows
the painting of point cloud image using RGB images in the
camera perspective. The figure 6 shows the entire rgb image
painted point cloud for verification.

Later, the semantic images were used for painting the point
clouds and the results has been shown in figure 7 and 8.

Fig. 5. Point cloud data painted using the source camera RGB images (In
camera perspective).

Fig. 6. Point cloud data painted using the source camera RGB images.

Fig. 7. Point cloud data painted using the source segmented images (In camera
perspective).

Fig. 8. Point cloud data painted using the source segmented images.

C. Building entire Map
In order to build the entire map using the segmented

point clouds we use the point-to-point Iterative Closest Point
Algorithm in the Open3D library. The objective of the ICP
algorithm is to do Point cloud alignment. Thus, the algorithm
estimates the transformation to move the first point cloud data
to the second point cloud data to be aligned with each other.

Iterative Closest Point Algorithm
The point cloud alignment is performed in two steps by the
ICP algorithm:

• Data Association
• Estimating Transformation
1) Data Association: Let us assume there are two consecu-

tive points clouds, namely, PCD-I and PCD-II. In this step, for
a given point in PCD-I, we calculate the Nearest Neighbour
from the PCD-II point cloud. Similarly, for the other points in



the PCD-I point cloud we calculate the corresponding Nearest
Neighbours in the PCD-II point cloud data.

2) Estimating Transformation: In this step, we are trying
to minimize the distance between the point cloud pairs and try
to estimate the transformation from PCD-I to PCD-II. There
are two steps to achieve this process:

• First, we compute the centre of mass the point clouds
PCD-I and PCD-II. Then we evaluate the translation
vector required to move the centre of mass on top of
each other.

• Second, we compute the optimal rotation between the two
super-imposed point clouds to match the corresponding
point pairs. This process is optimized using SVD method.

We have to recompute the data association and transforma-
tion after each iteration to achieve the most optimal solution.
To fine-tune the point-to-point ICP for better results, the
transformation matrix is initialized as

T =


1 0 0 point cloud index
0 1 0 0
0 0 1 0
0 0 0 1


where, point cloud index is the ith point cloud to register.

The idea behind using point cloud index is that, the point
clouds are captured when the vehicle is in motion, and there
will be a displacement (along X-axis in this case) in the
corresponding point of two point clouds. So, initializing the
transformation matrix by point cloud index will first translate
the ith point cloud by ’i’ distance. This brings the source point
cloud near the target point cloud. Then, on performing ICP
we get better results.

IV. RESULTS
The result of the ICP algorithm has been as shown in the

following figure 9.

Fig. 9. Map built using point-to-point ICP algorithm on semantic painted
point clouds.

It can be observed from the above output that the right part
of map is properly segmented, whereas the left side of the
map is not. This is because the images used to paint the point
clouds are from the from view of the ego vehicle. To improve
the accuracy of the segmentation, the scene must be captured
in both directions and it should be used when segmenting
the point cloud. Furthermore, from the above map we can

observe that the result of the ICP algorithm is decent but not
that efficient and there are others methods to better generate
the map using painted point clouds.
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