
RBE/CS549 Computer Vision
Homework 2 - LIDAR Semantics

Anagha R. Dangle
Email: ardangle@wpi.edu

Using 1 late day

Abstract—This homework is divided into 2 stages. The first
stage is to build a high-definition map using the raw LIDAR data.
Point-to-Point ICP variant is used to perform map building. It
is an algorithm used to minimize the distance between two point
clouds. The second stage involves utilizing the RGB images to
perform semantic segmentation of every frame in the images.
Once the semantic segmentation is performed, the task is to
project the color information from the images onto the LIDAR
ICP map built before.

I. STAGE-I: MAP BUILDING USING ICP

We initially have the raw LIDAR data in the form of binary
files. We first convert these binary files for each image to
a PCD file which is a point cloud file format required for
Open3D. This is done by using a separate file which converts
all the .bin files to .pcd format. Now we have to add the first
2 pcd files, then add the 3rd pcd file to the result, and so on.
To build a map, we need to add multiple of these point cloud
files from the raw LIDAR data. Point-to-Point iterative closest
point (ICP) algorithm was used to perform the same. From
the Point-to-Point ICP we get transformations from one point
cloud to another and that is then used to add all the point
clouds by transforming each source to the target.

A. Point-to-Point ICP

The Point-to-point ICP works in the following way:
• Initialize the alignment between the two point clouds by

selecting a few points from one cloud and finding the
closest points in the other cloud.

• Iteratively improves the alignment by using an optimiza-
tion algorithm to minimize the distance between the two
point clouds.

• At each iteration, the algorithm calculates the transfor-
mation (rotation and translation) that aligns the points in
one cloud with the points in the other cloud.

• The algorithm stops when the transformation between the
two point clouds is below a certain threshold or when the
maximum number of iterations has been reached.

The output of ICP is shown in the following 2 figures:

II. STAGE-II: SEMANTIC SEGMENTATION

Semantic segmentation bascically refers to assigning a label
or class to each pixel of an image. This can be used to
understand the contents of an image and to perform tasks such
as object detection and tracking. For Semantic Segmentation of
the RGB images, we use the BiSeNetv2 network architecture.

Fig. 1: Generated map

Fig. 2: Generated map

It takes the RGB image as the input and gives the semantic
segmented image as the output of the model.

A. BiSeNetv2

BiSeNetv2 is an encoder-decoder architecture for semantic
image segmentation. It consists of three main components:
an encoder, a decoder, and an auxiliary branch. The encoder
is a convolutional neural network (CNN) that processes the
input image and extracts features from it. The decoder is a
CNN that upsamples the feature map produced by the encoder
and generates a per-pixel prediction of the class labels. The
auxiliary branch is a CNN that processes the input image at a
lower resolution and produces a prediction for the class labels.
It is designed to capture global context information and is used
to complement the prediction produced by the decoder.

The Network architecture of BiSeNetv2 as given in the
paper is as follows:

Fig. 3: BiSeNetv2 architecture

B. Coloring the PointCloud Map

Now that we have successfully segmented the RGB images
using the model described above, in this part, we have to
transfer the colors of the semantic segmented images onto the
PointCloud-generated map. We utilize the camera extrinsic to
perform the same. 3 different types of files from the KITTI
3D Objection Detection dataset as follows are used in the
homework.
camera2 image (.png),
calibration (.txt),
velodyne point cloud (.bin),

For each frame, there is one of these files with the same
name but different extensions. The image files are regular png
files. T

The point cloud file contains the location of a point
and its reflectance in the lidar coordinate. The cal-
ibration file contains the values of 6 matrices —
P0–3, R0rect, T rvelo−to−cam, andTrimu−to−velo.

The Px matrices project a point in the rectified referenced
camera coordinate to the camerax image. camera0 is the ref-
erence camera coordinate. R0rect is the rectifying rotation for
reference coordinate (rectification makes images of multiple
cameras lie on the same plan). Trvelo−to−cam maps a point-
in-point cloud coordinate to reference coordinate.

Point Painting paints a point cloud with semantic labels,
based on the provided semantic map. The function first clips
the point cloud to a specified range, then resizes the semantic
map to match the shape of the point cloud. It then projects
all the points in the point cloud onto the image plane using
the provided camera matrices. After filtering out any points
that are outside the bounds of the image or have negative
coordinates, the function assigns a class to each point in the
point cloud based on the corresponding pixel in the semantic
map. Finally, it returns the painted point cloud, which is a
copy of the original point cloud with an additional channel
indicating the class of each point.

REFERENCES

[1] https://github.com/ahosnyyy/PointPainting
[2] https://www.cvlibs.net/datasets/kitti-360/index.php

Fig. 4: Output of 1 image

Fig. 5: Output of 2 images

Fig. 6: Output of 3 images

Fig. 7: Output of 4 images

Fig. 8: Output of 5 images

Fig. 9: Output of 6 images

Fig. 10: Output of 7 images

Fig. 11: Output of 8 images

Fig. 12: Output of 9 images

Fig. 13: Output of 10 images

Fig. 14: Final Output with different view

