
Homework 1 - AutoCalib
Zhentian Qian

Robotics Engineering
Worcester Polytechnic Institute

Worcester, Massachusetts
Email: zqian@wpi.edu

I. INITIAL PARAMETER ESTIMATION

A. Solving for Approximate K or Camera Intrinsic Matrix

The camera intrinsic matrix K is given by:

K =

fx 0 cx
0 fy cy
0 0 1

 (1)

with (cx, cy) the coordinates of the principal point, fx and fy
the scale factors in image u and v axes.

Let

B = K−TK−1 =

B11 0 B13

0 B22 B23

B13 B23 B33



=


1
f2
x

0 − cx
f2
x

0 1
f2
y

− cy
f2
y

− cx
f2
x
− cy

f2
y

c2x
f2
x
+

c2y
f2
y
+ 1


(2)

Note that B is symmetric, defined by a 5D vector b =
[B11, B22, B13, B23, B33]

T . Given an image of the model
plane, an homography can be estimated (refer to Project 1).
Let’s denote it by H. Let the ith column vector of H be
hi = [hi1,hi2,hi3]

T . Then, we have

hT
i Bhj = vT

ijb (3)

with

vij = [hi1hj1, hi2hj2, hi3hj1 + hi1hj3,

hi3hj2 + hi2hj3, hi3hj3]
T

Therefore, the two fundamental constraints from a given
homography [1], can be rewritten as 2 homogeneous equations
in b: [

vT
12

(v11 − v22)
T

]
b = 0 (4)

If n images of the model plane are observed, by stacking
n such equations as (4) we have

Vb = 0 (5)

where V is a 2n×5 matrix. If n ≥ 2, we will have in general
a unique solution b defined up to a scale factor. The solution
to (5) is well known as the eigenvector of VTV associated
with the smallest eigenvalue (equivalently, the right singular
vector of V associated with the smallest singular value).

Matrix B is estimated up to a scale factor, i.e., B =
λK−TK with λ an arbitrary scale. Once b is estimated, we
can compute all camera intrinsic matrix K.

cx = −B13

B11
(6)

cy = −B23

B22
(7)

λ = B33 −
B2

23

B22
− B2

13

B11
(8)

fx =

√
λ

B11
(9)

fy =

√
λ

B22
(10)

B. Estimate Approximate R and t or Camera Extrinsics
Once K is known, the extrinsic parameters for each image

is readily computed. We have [1]:

r1 =
K−1h1

∥K−1h1∥
(11)

rr =
K−1h2

∥K−1h2∥
(12)

r3 = r1 × r2 (13)

t =
2K−1h3

∥K−1h1∥+ ∥K−1h2∥
(14)

In theory, the scale λ = 1/∥K−1h1∥ = 1/∥K−1h2∥. In
practice, we observe some minor difference between those two
and uses the average for the translation vector t. Also, because
of noise in data, the so-computed matrix Q = [r1, r2, r3] does
not in general satisfy the properties of a rotation matrix and
needs to be converted to a rotaton matrix R. Let the singular
value decomposition of Q be USVT . The rotation matrix R
that would minimize the Frobenius norm of the difference R−
Q is given by R = UVT . The rotation matrix is subsequently
converted to the rotation vector for optimization in the final
stage. Let the rotation vector be:

r = θ

rxry
rz

 (15)

with r2x + r2y + r2z = 1. Since

R−RT

2
= sin θ

 0 rz ry
rz 0 −rx
−ry rx 0

 (16)



And:
tr(R) = 1 + 2 cos θ (17)

Given the rotation matrix R, the angle value can be calculated
as:

θ = arccos

(
tr(R)− 1

2

)
(18)

And the rotation vector is calculated as:

r =
θ

2 sin θ

R32 −R23

R13 −R31

R21 −R12

 (19)

C. Approximate Distortion k

Since the camera has minimal distortion, we can assume
that k = [0, 0]T for a good initial estimate.

II. NON-LINEAR GEOMETRIC ERROR MINIMIZATION

We are given n images of a model plane and there are
m points on the model plane. We have the initial estimates
of K,R, t,k, now we want to minimize the geometric error
defined as given below

N∑
i=1

M∑
j=1

∥xi,j − x̂i,j(K, ri, ti,Xj ,k)∥ (20)

Formally, the optimization problem is as follows:

argminK,ri,ti,Xj ,k

N∑
i=1

M∑
j=1

∥xi,j − x̂i,j(K, ri, ti,Xj ,k)∥

(21)
where x̂i,j(K, ri, ti,Xj ,k) is the projection of point Pj in
image i. We use the rotation vector ri to parameterize the
rotation matrix R, related by the Rodrigues formula [2]:

R = I+ (sin θ)[ω]× + (1− cos θ)[ω]2× (22)

where θ = ∥r∥ and ω = r/θ.
The x̂i,j(K, ri, ti,Xj ,k) term merits more explanation

[3]. The joint rotation-translation matrix [R|t] is the matrix
product of a projective transformation and a homogeneous
transformation. The 3-by-4 projective transformation maps 3D
points represented in camera coordinates to 2D points in the
image plane and represented in normalized camera coordinates
x = Xc/Zc and y = Yc/Zc:

Zc

xy
1

 =

1 0 0 0
0 1 0 0
0 0 1 0



Xc

Yc

Zc

1

 (23)

The homogeneous transformation is encoded by the extrinsic
parameters R and t and represents the change of basis from
world coordinate system w to the camera coordinate sytem
c. Thus, given the representation of the point P in world
coordinates, Pw, we obtain P’s representation in the camera
coordinate system, Pc, by

Pc =


Xc

Yc

Zc

1

 =

[
R t
0 1

]
Xw

Yw

Zw

1

 =

[
R t
0 1

]
Pw, (24)

Combining the projective transformation and the homogeneous
transformation, we obtain the projective transformation that
maps 3D points in world coordinates into 2D points in the
image plane and in normalized camera coordinates:

Zc

xy
1

 =
[
R|t

] 
Xw

Yw

Zw

1

 , (25)

with x = Xc/Zc and y = Yc/Zc. Radial distortion can then
be represented as follows:[

x′

y′

]
=

[
x(1 + k1r

2 + k2r
4)

y(1 + k1r
2 + k2r

4)

]
(26)

with
r2 = x2 + y2 (27)

The projection of point P on the image plane is then:

x̂ =

[
u
v

]
=

[
fxx

′ + cx
fyy

′ + cy

]
(28)

The problem defined in (21) is a nonlinear minimization
problem, which is solved with the Levenberg-Marquardt Al-
gorithm as implemented in scipy.optimize.least squares [4].

III. RECTIFICATION AND REPROJECTION OF CORNERS ON
RECTIFIED IMAGE

To rectify distorted image, first, we need to find a mapping
function from the distorted image to the undistorted image.
For each pixel (u,v) in the destination (corrected and rectified)
image, we compute the corresponding coordinates in the
source image (that is, in the original image from camera).
The following process is applied:

x← (u− cx)/fx

y ← (v − cy)/fy

r2 ← x2 + y2

x′ ← x(1 + k1r
2 + k2r

4)

y′ ← y(1 + k1r
2 + k2r

4)

mapx(u, v)← x′fx + cx

mapy(u, v)← y′fy + cy

Opencv remap function is then used for obtain the final result.
For the reprojection of corners on rectified image, we follow
the same process as (23) to (28), with the expection that the
distortion coefficients k1 and k2 are set to zero, since the image
is already rectified.

IV. RESULTS

A. K matrix, k vector and reprojection error

The obtained K matrix is:2034 0 771
0 2026 1346
0 0 1

 (29)



The obtained k is:
k =

[
0.1684
0.7002

]
(30)

The average reprojection error per point per frame is 0.52
pixel.

The results obtained using our custom implementation and
the opencv calibrateCamera function is summarized in Table I.
We can see that the estimated fx and fy are similar, indicating
an aspect ratio close to one. The estimated optical centers are
roughly at the center of the image. And these estimated param-
eters closely approximate the solution provided by OpenCV.
However, since we only consider radical distortion paramter-
ized by k1 and k2, and OpenCV uses a more complicated
model including the tangential distortion, the estimated k1 and
k2 are quite different. We would also like to report that because
the distortion is minimal, by considering a simpler distortion
model, we were actually able to achieve better reprojection
accuracy than OpenCV. The average reprojection error per
point per frame is 0.52 pixel for our method, and 0.68 pixel
for OpenCV.

TABLE I: Comparison between our results and OpenCV
results.

Results fx fy cx cy k1 k2 Error

Ours 2034 2026 771 1346 0.1684 0.7002 0.52
OpenCV 2042 2035 764 1359 0.2905 -2.4274 0.68

B. Rectification and Reprojection of Corners on Rectified
Image.

The rectified images are shown in Fig. 1. We can see that
all the edges on the check-board are straight after rectification.
However, the image content away from check-board are dis-
torted as they are not considered in the optimization process
described in (21).

The reprojected corners on the rectified images are also
visuzlied in Fig. 1. We can see that they fall precisely on
the check-board of the rectified images.

REFERENCES

[1] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 22, no. 11,
pp. 1330–1334, 2000.

[2] O. Faugeras and O. A. Faugeras, Three-dimensional computer vision: a
geometric viewpoint. MIT press, 1993.

[3] “Opencv: Camera calibration and 3d reconstruction,”
https://docs.opencv.org/4.x/d9/d0c/group calib3d.html, accessed:
2022-10-10.

[4] J. J. Moré, “The levenberg-marquardt algorithm: implementation and
theory,” in Numerical analysis. Springer, 1978, pp. 105–116.

Fig. 1: The original check-board images (left column) and the
rectified images with the corners reprojected (right column).


