
RBE549 Computer Vision : Homework-1
Ajith Kumar Jayamoorthy

Robotics Engineering Department
Worcester Polytechnic Institute

Worcester, MA, U.S.A.
ajayamoorthy@wpi.edu

Abstract—This document consist of homework implementation
of Camera Calibration technique by Zhengyou Zhang of Mi-
crosoft. 13 images of Checkerboard pattern taken from Google
Pixel XL phone is used for this calibration. The approximate
intrinsic and extrinsic parameters of the camera are calculated
and the Non-linear Geometric Error Minimization is performed
to optimize these parameters. After optimization, the new pa-
rameters are used and the points are re-projected on the warped
image.

I. INTRODUCTION

In this assignment we are going to implement an automated
Camera Calibration Technique by Zhengyou Zhang of Mi-
crosoft. A checkerboard pattern is used as a calibration target
as shown in Figure 1. This was printed on an A4 paper and
the size of each square was 21.5 mm.

Fig. 1. Calibration Target Image [1]

The method consists of following steps:

1) Corner Detection of Checkerboard pattern
2) Estimate Camera Intrinsic Matrix (K)
3) Estimate Camera Extrinsics (R,t)
4) Non-linear Geometric Error Minimization
5) Estimation of re-projection error without and with opti-

mization
6) Rectification and Visualization

II. CAMERA CALIBRATION

In this section, a brief explanation of implementation and
results would be summarised

A. Corner Detection of Checkerboard pattern
The checker board patter used in this camera calibration

is 9 x 6 (excluding the boundary corner points). The built-in
function cv2.findChessboardCorners in Open-CV is used to
find the corners of the Checker board. Another set of ideal real
points (scaled points) are calculated by creating the meshgrid
of 9x6 points and then multiplying it with 21.5 mm.

After the corner points are extracted from the
cv2.findChessboardCorners function, the homography
between the corner points from the image and the respective
ideal real points are calculated and stored as a list. The
extracted corner points are as shown in figure 2.

Fig. 2. Visualization of corner points extracted. [3]

B. Estimation of Camera Intrinsic Matrix (K)
The camera Intrinsic matrix (K) is defined as follows:

K =

α γ u0
0 β v0
0 0 1

Now we considered a matrix B = K-TK-1, which is symmet-

ric and is defined as follows:

B = K -TK -1 =

B11 B12 B13
B12 B22 B23
B13 B23 B33

This matrix B is rewritten as a vector b as shown below:

b =
[
B11 B12 B22 B13 B23 B33

] T

vij =

hi1 · hj1

hi1 · hj2 + hi2 · hj1

hi2 · hj2

hi3 · hj1 + hi1 · hj3

hi3 · hj2 + hi2 · hj3

hi3 · hj3

This matrix B is rewritten as a vector b as shown below:[

vT12
(v11 − v22)T

]
· b = 0

On calculating all the vectors v into a matrix V of size 2n x 6
where n is the number of images. We finally get the equation

V · b = 0

On solving for b, we get all the parameters required to
calculate the Camera Intrinsic matrix K. The following are
the set of equations to be used to calculated the matrix:

v0 =
(B12B13 −B11B23)

(B11B22 −B2
12)

λ = B33 −
[B2

13 + v0(B12B13 −B11B23)]

B11

α =

√
λ

B11

β =

√
λB11

B11B22 −B2
12

γ = −B12α
2β

λ

u0 =
γv0
β

− B13α
2

λ

The initial estimation of the camera intrinsic matrix (K) based on
the values calculated above is

Kinitial =

2.0420e+ 03 −4.4197 7.7597e+ 02
0 2.0274e+ 03 1.3412e+ 03
0 0 1

C. Estimation of Camera Extrinsics (R & t)

After computing the homography H and the Camera Intrinsic
Matrix (K), we can calculate the extrinsic parameters Rotation Matrix
R and translation vector t by using the formula given below:

r1 = λK−1h1

r2 = λK−1h1

r3 = r1× r2

t = λK−1h3

Here r1, r2 and r3 are the column vectors of the rotation matrix
R and t is the translation vector. The values of λ is given by

λ =
1

||K−1 · h1||
=

1

||K−1 · h2||

Therefore for the value of λ to be substituted in the calculation
of extrinsic parameters, I have considered the mean of both the
calculation.

λ =

1
||K−1·h1|| +

1
||K−1·h2||

2

Using the above equations, mean re-projection error before opti-
mization is computed as 0.9334.

D. Non-linear Geometric Error Minimization
In this optimization process, we further consider the radial distor-

tion error. We first calculated the corrected co-ordinates of the corner
points as follows:

û = u+ (u− u0)[k1(x
2 + y2) + k2(x

2 + y2)2]

v̂ = v + (v − v0)[k1(x
2 + y2) + k2(x

2 + y2)2]

where (u,v) are the ideal pixel co-ordinates without distortion and
(x,y) are the ideal normalized image co-ordinates without distortion.
We have framed a non-linear minimization problem, which is solved
with the Levenberg-Marquardt Algorithm as implemented in Min-
pack. We are using the scipy.optimize.least squares [6] function to
perform the optimization. The residual function for the optimization
process is written as optFunc().

After optimization process, the new Intrinsic Camera Matrix
K final is evaluated as follows:

Kfinal =

2.1339e+ 03 −9.487e+ 02 5.5739e+ 02
0 2.2125e+ 03 1.3994e+ 03
0 0 1

The mean re-projection error after optimization is computed as
0.8850. The distortion parameters are also computed as k 1 =
0.044184 and k 2 = -0.271643.

The following figure 3 show the visualization of re-projected points
on the warped image and the improvement through the optimization
process.

Fig. 3. Visualization of rectified image and Corner points.(Blue - Rectified
Corner points; Orange - Original Corner Points)

III. CONCLUSION

From the above results, it can be observed that the improvement
with optimization is considerable but not significant.This can be
observed by comparing the mean re-projection error before and
after optimization. To further improve the calibration process, we
can try other optimization algorithms and compare the results with
Levenberg-Marquardt Algorithm.

REFERENCES

[1] https://rbe549.github.io/fall2022/hw/hw1/
[2] https://www.microsoft.com/en-us/research/wp-

content/uploads/2016/02/tr98-71.pdf
[3] https://docs.opencv.org/4.x/dc/dbb/tutorial py calibration.html
[4] https://docs.opencv.org/4.x/d9/d0c/group calib3d.html#ga687a1ab946686f0d85ae0363b5af1d7b
[5] https://learnopencv.com/geometry-of-image-formation/
[6] https://docs.scipy.org/doc/scipy-0.13.0/reference/tutorial/optimize.html
[7] https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html

