
Assignment 1: AutoCalib

Alex Chiluisa
Used on late day

I. CAMERA CALIBRATION

This paper reports on the process to perform camera
calibration following the approach described by Zhang [1].
First, I obtained the real-world (M) points (x,y) correspond-
ing to the checkerboard image set. Removing the edges
of the checkerboard, we have a final board of 5x8 with
6x9 points with a width of 21.5 mm. Then, by using the
cv2.findChessboardCorners function [2], I found the image
coordinates of the checkerboard and ensure the order be-
tween m and M matches for all the images.

A. Approximate Camera Intrinsic Matrix

Following the notation and equations described in section
2 in [1], I found the camera intrinsic matrix given by K in
eq. 1. (Zhang’s paper uses A as the camera intrinsic matrix,
this report uses K)

K =

α γ u0

0 β v0
0 0 0

 (1)

Where (u0, v0) are the coordinates of the principal point,
α and β are the scale factors in image u and v axes, and γ
is the parameter describing the skewness of the two image
axes.

Using the pinhole model, we define the relationship be-
tween the point correspondences m and M as shown in eq. 2

sm̃ = K[R t]M̃ (2)

Where m̃, and M̃ are the augmented vector, refer to
section 2.1 in [1]

Following the approach in section 3.1 in [1], I estimated
the parameters on matrix K, by computing matrix Vi. To
accomplish this task, I calculated the homography matrix H
between the point correspondences m and M for n images,
being n the number of images in the image calibration set.
Having a total of 13 images, the size of V is given by
2nx6, in this case, V[26x6]. Therefore, we can solve the
homogeneous equations in b:

V b = 0 (3)

[
vT12

(v11 − v22)T

]
b = 0 (4)

A. Chiluisa is with the Department of Robotics Engineering,
Worcester Polytechnic Institute, Worcester, MA 01609, USA (e-mail:
ajchiluisa@wpi.edu)

Fig. 1. Initial results of camera calibration

Where b = [B11, B12, B22, B13, B23, B33] and can
be computed by using the singular value decomposition
(SVD) [3]. Then using the appendix B in [1], we can find
the parameters of the intrinsic matrix K.

B. Approximate Extrinsics

Here, I find the rotation and translation of the camera
following the process in section 3.1 in [1]. Using the inverse
matrix of K and homography of each images, I re-project
the coordinates of M into every image plane given by
the image coordinates m̂. To accomplish the projection of
M , I defined the homogenous coordinates of M[1x4], then
find the product X ′ between the extrinsic matrix Rt and
the homogenous coordinate M . subsequently, I found the
norlmalized coordinates x, y and the radius of distorsion r =√
(x2 + y2). Then, I compute the pixel image coordinate U ′

and find U . Finally, I compute m̂ = [û, v̂] by using eq. 12
and eq. 13 in [1]. Where k1 and k2 are the radial distortion
coefficients. Initially, I assumed k = (k1, k2)

T = (0, 0)T .
By knowing m and m̂, the projection error can be com-

puted to estimated the accuracy the accuracy of the intrinsic
and extrinsic parameters. The results of the initial estimation
are shown in Fig. 1. The re-projection error is 0.6982

C. Non-linear Geometric Error Minimization

In this section, I optimized the intrinsic (u0, v0, α, β,
and γ), extrinsic parameters (Rt), and distortion coeffi-
cients (k1, k2). By using the scipy.optimize function and
a LM optimization, the parameters described above were
optimized. An error vector was computed using a L2 norm
as is described in [4], [5]. The results of the optimization
parameters are shown in Fig. 2. The re-projection error, after
optimization is 0.6887

II. CONCLUSION

Once the images have been calibrated and optimized, the
re-projected points are displayed over the calibrated images



Fig. 2. Optimized results of camera calibration

Fig. 3. Left: Original Images with detected points (red dots), right:
calibrated images with re-projected points (blue dots)

(blue dots) as well as the detected points (red dots) in the
original images as is presented on Fig. 3 - 15

REFERENCES

[1] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 22,
no. 11, pp. 1330–1334, 2000.

[2] https://www.geeksforgeeks.org/camera-calibration-with-python-opencv/.
[3] https://www.geeksforgeeks.org/singular-value-decomposition-svd/.
[4] https://opencv24-python-tutorials.readthedocs.io/en/stable/py tutorials/

py calib3d/py calibration/py calibration.html.
[5] https://github.com/h-gokul/AutoCalib/.

Fig. 4. Left: Original Images with detected points (red dots), right:
calibrated images with re-projected points (blue dots)

Fig. 5. Left: Original Images with detected points (red dots), right:
calibrated images with re-projected points (blue dots)



Fig. 6. Left: Original Images with detected points (red dots), right:
calibrated images with re-projected points (blue dots)

Fig. 7. Left: Original Images with detected points (red dots), right:
calibrated images with re-projected points (blue dots)

Fig. 8. Left: Original Images with detected points (red dots), right:
calibrated images with re-projected points (blue dots)

Fig. 9. Left: Original Images with detected points (red dots), right:
calibrated images with re-projected points (blue dots)



Fig. 10. Left: Original Images with detected points (red dots), right:
calibrated images with re-projected points (blue dots)

Fig. 11. Left: Original Images with detected points (red dots), right:
calibrated images with re-projected points (blue dots)

Fig. 12. Left: Original Images with detected points (red dots), right:
calibrated images with re-projected points (blue dots)

Fig. 13. Left: Original Images with detected points (red dots), right:
calibrated images with re-projected points (blue dots)



Fig. 14. Left: Original Images with detected points (red dots), right:
calibrated images with re-projected points (blue dots)

Fig. 15. Left: Original Images with detected points (red dots), right:
calibrated images with re-projected points (blue dots)


