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Abstract—This paper implements the work of (1). We automat-
ically estimate the parameters of the camera like the focal length,
distortion coefficients and principle points, thereby calibrating
our camera. We use a checker board pattern as our calibration
target

I. INTRODUCTION

Camera calibration is an important step in 3D computer
vision. It enables us to extract real world coordinates from 2D
images. The work done this in field can be broadly classified
into two into two categories: Photogrammetric calibration and
self calibration. Photogrammetric calibration involves using
an object whose 3D geometry is well known. The object
should also consist of orthogonal planes, like a cube. This
technique usually requires an elaborate setup and can be very
expensive. Self-calibration involves using multiple images in
a static setting and using the correspondence between theses
images to calibrate cameras. This technique is more flexible
than the former one.

Authors in (1) propose a technique that is between Pho-
togrammetric and self-calibration. Their approach involves
using images of a known planar pattern like a checkerboard
at different orientations. We are going to implement this
proposed method in this paper. In order to understand the
process, we will first go over some basic about the pin hole
camera model in the next section.

II. PINHOLE CAMERA MODEL

Figure 1 is a pin hole camera model where a 3-D object
is seen as a 2D image on the image plane of a camera.. This
image plane is nothing but the sensor of our camera. For ease
of understanding we always refer to the virtual image plane
as our sensor instead of image plane.This is done because the
image is no longer inverted.

Figure 2 shows the three coordinate frames in the Pin
hole camera model. The world frame, camera frame, and the
image frame respectively. As shown in Figure 3 the extrinsic
parameters help in converting the world coordinates to camera
coordinates. Similarly the intrinsic parameters convert the
camera coordinates to the pixel coordinates.

Fig. 1: Pin Hole camera model

Fig. 2: Various coordinate systems

III. CAMERA MATRIX

The camera matrix is made up intrinsic and extrinsic camera
matrices. It helps converting from the world coordinates to

Fig. 3: Various coordinate systems



pixel coordinates. Consider the following equation.
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Here s is an arbitrary scale factor.The terms u and v

represent the pixel coordinates. X,Y represents the world
coordinates and H is the camera matrix. H is broken down
as

H = A
[
r1 r2 t

]
Here A represents the intrinsic camera matrix. The terms r1

and r2 are the first two columns of the rotation matrix between
the world frame and the camera frame. And t is the translation
column. The A matrix is written as follows

A =

α γ u0

0 β v0
0 0 1


α, β, γ,u0 and v0 represent the focal length in x, focal

length in y, the distortion coefficient, and the principal points
respectively.

As discussed above finding the Camera matrix H involves
finding the Intrinsic and extrinsic camera parameters.

A. Intrinsinc camera matrix

The first step here is to calculate the Homography between
the World coordinates(X,Y,Z) and the camera coordinates
Xc,Yc (refer to Figure3). This can be achieved by selecting
common features in the world coordinates and the camera
coordinates. In the assignment we have chosen the following
world coordinates(green) shown in Figure 4. In order to find
the corresponding selected points we uses cv2.checkerboard
function. This gives us the corner points(green) in the image as
shown in Figure 5.This process is repeated for all 13 pictures
provided to us.

We refer to the process used by (1) in order to calculate the
camera matrix. We will not go into detail about the logic of the
process, but will only outline the steps. Using the previously
calculated homography matrix we compute three vectors vij
of the following form.

vij =


hi1hj1

hi1hj2 + hi2hj1

hi2hj2

hi3hj1 + hi1hj3

hi3hj2 + hi2hj3

hi3hj3


Here hij represents the ith row and jth column of the
homography matrix. We then calculate the following.

V =

[
v12

(v11 − v22)
T

]
We then solve for b in

V ∗ b = 0

Fig. 4: World frame of checkerboard

Fig. 5: Image frame of checkerboard



b is of the form

b =
[
B0 B1 B2 B3 B4 B5

]
We the use the following equations to calculate the various

parameters

w = B0B2B5 −B2
1B5 −B0B

2
4 + 2B1B3B4 −B2B

2
3

d = B0B2 −B2
1

α =
√
w/(d ∗B0

β =
√
w/(d2 ∗B0

γ =
√
w/(d2 ∗B0.B0

u0 = (B1B4 −B2B3)/d

u0 = (B1B3 −B0B4)/d

B. Extrinsic parameters

λ = 1/(||A−1h1||) = 1/(||A−1h2||)

r1 = λA−1h1

r2 = λA−1h2

r3 = r1 × r2

t = λA−1h3

C. Maximum Likelihood estimation

Using the above mentioned equations we get a rough
estimate about our intrinsic and extrinsic parameters. We then
use maximum likelihood estimation to optimize our parame-
ters. For this we use scipy.optimize.least-squares method.The
following equation is used to optimize our parameters.

n∑
i=1

m∑
j=1

||mij − m̂(A,Ri, gti,Mj)||2

Here mij represents the actual pixel coordinates in the
image. And m̂ represents the estimated pixel coordinates of the
corners using the above mentioned optimization.M represents
the world coordinates of a given corner. It is also important
to consider the effects of radial distortion in our camera.
Therefore we also consider the distortion coefficients k1 and
k2 in our optimization. K1 and K2 are set to zero initially.The
formula that takes the distortion coefficient is given as follows.
Here u, v are the estimated pixel coordinates. û and v̂ are the
pixel coordinates adjusted for radial distortion.

û = u+ (u− u0) ∗ (k1 ∗ (x2 + y2) + k2 ∗ (x2 + y2)2)

v̂ = v + (v − v0) ∗ (k1 ∗ (x2 + y2) + k2 ∗ (x2 + y2)2)

IV. RESULTS

A. Intrinsic matrix

Using the above mentioned method, the calculated Camera
Intrinsic matrix is found to be the following. We have calcu-
lated the re-projection error obtained when just the intrinsic
matrix is used. This is done by calculating the difference in
actual pixel coordinates of corners and the estimated pixel co-
ordinates of corners. The results are as follows. It is important
to note that the distortion coefficients are not included here.
Figure 6 shows the the plotted corners. The red ones are the
actual corners obtained through cv2.checkerboard. The blue
ones are the estimated corners. There is hardly any difference
between both.

A =

2034.75 0.493 772.7
0.0 2017.90 1360.90
0.0 0.0 1.0


k1 = k2 = 0

Error = 1.08903

Fig. 6: Estimated corners using rough estimate of A

Fig. 7: Estimated corners using optimized A

Fig. 8: Rectified image with re-projected corners



B. Optimized Intrinsic matrix

Similarly the error for the optimized A matrix and using the
distortion coefficients is shown. Figure 7 shows the respective
results as discussed in the previous subsection

Aoptimized =

2026.95 1.4288 772.5
0.0 2009.83 1360.45
0.0 0.0 1.0


k1 = 0.090

k2 = −0.4275

Error = 0.9334

C. Rectification

Now that we have calculated the optimized intrinsic matrix
and the distortion coefficients we can undistort our images
based on the same. To make sure that our undistortion is
correct we can plot our re-projected corners to see if they
are still in the right spots. Figure 9 is an example of the an
undistorted image with the re-projected corners. It is important
to note that there is not really a big difference between the
distorted and undistorted images.
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