
RBE549 HW0 Alohomora
Haoying Zhou

Department of Robotics Engineering
Worcester Polytechnic Institute

Worcester, MA, 01609
Email: hzhou6@wpi.edu

Abstract—Note: Use 5 late days. For your information, I have
2 extra late days because HW0 has time conflict with my summer
internship

I. PHASE 1: SHAKE MY BOUNDARY

A. Filter Banks

1) Oriented DoG Filters: The Gaussian kernel can be
calculated by Equation 1:

g(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (1)

where σ is the scale of the Gaussian kernel.
To calculate the derivative of Gaussian (DoG) kernel, I use

Sobel operator[1] with:

Gx =

1 0 −1
2 0 −2
1 0 −1

Gy =

 1 2 1
0 0 0
−1 −2 −1

As mentioned in the description[2], the derivative of the

Gaussian kernel g(x, y) in x and y direction can be denoted
as Equation 2:

∂g

∂x
= Gx ⊛ g(x, y)

∂g

∂y
= Gy ⊛ g(x, y)

(2)

where ⊛ represents the convolution operation.
The oriented derivative of Gaussian function is the product

of gradient of Gaussian kernel and the rotation vector r =[
cos θ
sin θ

]
. Therefore, the oriented derivative of Gaussian can be

denoted as Equation 3:

∇rg = ∇g · r = cos θ
∂g

∂x
+ sin θ

∂g

∂y
(3)

Then, with different σ values and orientations, I can obtain
the oriented DoG filters as shown in Figure 1:

Fig. 1: Oriented DoG filter bank

2) Leung-Malik Filters: Compared to DoG filter, the Gaus-
sian kernel in Leung-Malik (LM) filter [3] has different vari-
ances along x and y. Therefore, the Gaussian kernel formula
can be rewritten as Equation 4:

g(x, y) =
1

2πσxσy
e
−(x2

σx2 + y2

σy2)
(4)

then the first (DoG) and second derivative (Laplacian of
Gaussian, LoG) of the Gaussian kernel can be calculated
analytically as Equation 5 :

∇g(x, y) = − x

σx2
(− y

σy2
)

1

2πσxσy
e
−(x2

σx2 + y2

σy2)

∇2g(x, y) = − 1

πσx2σy2
(1− x2

2σx2
− y2

2σy2
)e

(x2

σx2 + y2

σy2)
(5)

Correspondingly, the mixed first and second derivative filters
can be calculated as Equation 6:

∂g(x, y)

∂x
= − x

σx2
(− y

σy2
)

1

2πσxσy
e
−(x2

σx2 + y2

σy2)

∂2g(x, y)

∂x2
=
x2 − σx

2

σx4
1

2πσxσy
e
−(x2

σx2 + y2

σy2)
(6)

To obtain oriented filters, I can rotate the x and y coordi-
nates by angle θ and substitute the rotated coordinates into
Equation 5 and Equation 6. The rotated coordinates can be
denoted as: [

xr
yr

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
Eventually, with different σ values and orientations, I can

obtain the LMS and LML filters shown in Figure 2 and
Figure 3:

Fig. 2: Leung-Malik Small filter bank

mailto:hzhou6@wpi.edu

Fig. 3: Leung-Malik Large filter bank

3) Gabor Filters: The Gabor filters can be calculated using
Equation 7[4]:

f(x, y, θ) = e−
x′2+y′2

2σ2 cos (2π
x′

λ
+ ψ)

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ

λ = σ1.1

ψ = 0

γ = 1

(7)

where θ is the rotation angle.

Then, with different σ values and orientations, I can obtain
the Gabor filters shown in Figure 4:

Fig. 4: Gabor filter bank

B. Texton Map

To obtain the texton map, I need to firstly implement the
above filter banks to the images. To implement the filters, I
need to firstly grayscale the input image and convolute the
filter onto the input image. Here is an example image:

(a) Original Image

(b) Grayscale Image

Fig. 5: Example Input Image

Then, I implement the filter banks using convolution one by
one:

Fig. 6: Implement DoG filter bank

Fig. 7: Implement Leung-Malik Small filter bank

Fig. 8: Implement Leung-Malik Large filter bank

Fig. 9: Implement Gabor filter bank

The filter responses for DoG, LMS, LML and Gabor filters
are shown in Figure 6, Figure 7, Figure 8 and Figure 9. Then,
concentrate all the filter responses into a N ×W ×H array.
N = 168 is the total number of filters, W and H are the
dimensions of the input image. Next, the filter responses of
the images are then clustered into the K = 64 textons using
K-means algorithm. Then, the texton map T of the example
image is shown in Figure 10:

Fig. 10: Texton Map T of the example image

Moreover, generate the texton maps T of all images and
visualize in Figure 11:

Fig. 11: Texton Map T of all images

C. Brightness Map

To obtain the brightness map, I firstly need to convert the
image to the Lab[5] color space. The L channel represents the
brightness of the image. Then I perform K-means algorithm
with K = 16 clusters on the input data. Eventually, the
brightness map B of all images are obtained and shown in
Figure 12:

Fig. 12: Brightness Map B of all images

D. Color Map

To obtain the color map, I firstly get the RGB channels
of the images directly using cv2.imread(). Then, I feed
the RGB channel data to K-means algorithm with K = 16.
Eventually, the color map C of all images are obtained and
shown in Figure 13:

Fig. 13: Color Map C of all images

E. Texture, Brightness, Color Gradients

To calculate the texture gradient Tg , brightness gradient Bg

and color gradient Cg , I will follow the instruction[2] using
half-disc masks. The half-disc masks are pairs of binary im-
ages (HDleft, HDright) of half-discs at different orientations
and scales. The half-disc masks implemented are shown in
Figure 14, and I resize the kernels for better visualization.

Fig. 14: Half disc masks

To calculate out the gradients, I will implement algorithm 1.
K represents the number of clusters in K-means algorithm, and
⊛ represents convolution operation.

Moreover, calculated texture gradient Tg , brightness gra-
dient Bg and color gradient Cg for Figure 5 are shown in
Figure 15, Figure 16 and Figure 17.

Algorithm 1: Gradient Calculation Algorithm
Input: Texton Map T , Brightness Map B or Color Map C,

shown as img
Output: Texture Gradient Tg , Brightness Gradient Bg or

Color Gradient Cg , shown as χ2

χ2 = img ∗ 0
for i = 1 : K do
tmp = img ∗ 0
Implement following if-statement for every pixel p in
img :
if img[p] = i then
tmp[p] == 1

end if
gi = HDleft ⊛ tmp
hi = HDright ⊛ tmp

χi
2 = (gi−hi)

2

2(gi+hi)

χ2+ = χi
2

end for

Fig. 15: Texture Gradient Tg of the example image

Fig. 16: Brightness Gradient Bg of the example image

Fig. 17: Color Gradient Cg of the example image

F. Sobel and Canny baselines

The Sobel and Canny[6] baseline results are shown in
Figure 18 and Figure 19:

Fig. 18: Sobel Baseline

Fig. 19: Canny Baseline

G. Pb-lite Output

To obtain the edge based on Pb-lite[7], I can use a simple
equation as shown in Equation 8:

Pbedge =
Tg + Bg + Cg

3
⊙ (0.5 ∗ Pbcanny + 0.5 ∗ Pbsobel)

(8)

Therefore, the detected edge using Pb-lite is shown in
Figure 20:

Fig. 20: Pb-Lite Baseline

Furthermore, the ground truth is shown in Figure 21:

Fig. 21: Pb-Lite Baseline

Comparing the above results, I can see that false positive
edges of the Canny and Sobel baselines are suppressed in the
Pb-Lite baseline while true edges still remain. This is because
Pb-Lite baseline is able to use the global information of the
image and also combine multi-scale information [7].

II. PHASE2: DEEP DIVE ON DEEP LEARNING

For all neural networks trained in this section, I will
use stochastic gradient descent(SGD)[8] as the optimization
method and cross-entropy loss[9] as the loss function. The

number of epochs is 25, expect for the improving accuracy
section (which is 40).

Note: some drop-out layer may not be presented on the
network architectures. And if you cannot see the architecture,
you may find the corresponding <model_name>.png in the
attached submission.

A. Train your first neural network
The first neural network designed is a simple convolutional

neural network(CNN). The CNN architecture is shown Fig-
ure 22.

Fig. 22: CNN Architecture

There are 11969866 parameters in this model. I use a
stochastic gradient decent optimizer for learning, with a learn-
ing rate lr = 0.01 and weight decay decay = 0.0004 and a
batch size of 32. The train and test accuracy over epochs are
visualized in Figure 23 and Figure 24. Loss over epochs is
visualized in Figure 25.

Fig. 23: CNN Train Accuracy over Epochs

Fig. 24: CNN Test Accuracy over Epochs

Fig. 25: CNN Loss over Epochs

The confusion matrix of the trained model on training data
is:

4080 106 127 32 55 32 44 57 308 159
69 4432 24 13 15 23 39 27 108 250
253 31 3390 131 305 256 332 151 90 61
116 25 243 3143 161 672 324 154 91 71
149 19 190 122 3716 145 230 310 62 57
55 27 180 318 175 3769 158 216 45 57
28 26 133 72 109 91 4457 26 26 32
43 11 95 96 126 224 37 4283 24 61
231 94 41 22 12 21 24 15 4441 99
97 243 21 34 15 39 28 41 108 4374

The confusion matrix of the trained model on testing data
is:

749 19 40 13 9 9 19 13 83 46
19 809 6 8 7 6 9 4 23 109
85 7 511 34 84 87 101 48 23 20
33 17 75 376 63 230 92 60 26 28
43 4 66 52 548 42 104 111 25 5
21 1 68 101 40 634 35 66 22 12
6 9 42 35 27 27 824 9 11 10
21 2 31 27 46 71 6 765 4 27
80 46 8 8 3 8 9 11 792 35
33 87 4 14 4 9 10 27 40 772

B. Improving Accuracy of your neural network

The improve CNN architecture is almost identical to the
CNN architecture. The only difference is the batch size. And
the improve CNN architecture is shown in Figure 26.

Fig. 26: Improved CNN Architecture

Multiple approaches are implemented to improve the accu-
racy of the original CNN:

• Standardize the data input. The data is normalized from
[0, 255] to [0, 1].

• Increase the batch size to 64. [10]
• Increase the number of epochs to 40.

There are 11969866 parameters in this model. I use a
stochastic gradient decent optimizer for learning, with a learn-
ing rate lr = 0.01 and weight decay decay = 0.00025 and a
batch size of 64. The train and test accuracy over epochs are
visualized in Figure 27 and Figure 28. Loss over epochs is
visualized in Figure 29.

Fig. 27: Improved CNN Train Accuracy over Epochs

Fig. 28: Improved CNN Test Accuracy over Epochs

Fig. 29: Improved CNN Loss over Epochs

The confusion matrix of the trained model on training data
is:

4496 51 108 31 54 24 12 41 151 92
47 4705 20 19 9 11 15 22 52 100
154 22 4070 93 253 106 131 84 51 36
58 21 198 3995 163 254 97 120 46 48
88 9 138 88 4356 66 49 163 19 24
30 18 168 241 163 4104 65 153 25 33
21 22 137 72 95 49 4535 15 26 28
32 8 108 78 118 102 18 4498 14 24
144 55 61 15 17 10 7 18 4620 53
79 143 32 21 17 23 7 29 63 4586

The confusion matrix of the trained model on testing data
is:

754 26 53 17 13 6 9 12 65 45
18 810 14 9 6 5 6 5 27 100
66 7 581 48 117 44 58 46 21 12
26 19 100 454 84 152 52 62 15 36
25 3 73 48 664 31 44 92 15 5
19 5 82 151 57 580 20 70 9 7
9 8 54 53 64 30 743 13 9 17
12 3 49 29 59 51 2 776 4 15
81 40 19 8 3 5 4 4 805 25
35 94 15 14 4 6 8 30 39 761

C. ResNet, ResNeXt, DenseNet

1) ResNet: The ResNet architecture[11] is shown in Fig-
ure 30.

Fig. 30: ResNet Architecture, may check attachment for a
better view

There are 19148106 parameters in this model. I use a
stochastic gradient decent optimizer for learning, with a learn-
ing rate lr = 0.01 and weight decay decay = 0.0004 and a
batch size of 128. The train and test accuracy over epochs are
visualized in Figure 31 and Figure 32. Loss over epochs is
visualized in Figure 33.

Fig. 31: ResNet Train Accuracy over Epochs

Fig. 32: ResNet Test Accuracy over Epochs

Fig. 33: ResNet Loss over Epochs

The confusion matrix of the trained model on training data
is:

The confusion matrix of the trained model on testing data
is:

2) ResNeXt: The ResNeXt architecture[12] is shown in
Figure 34.

Fig. 34: ResNeXt Architecture, may check attachment for a
better view

There are 9128778 parameters in this model. I use a stochas-
tic gradient decent optimizer for learning, with a learning rate
lr = 0.01 and weight decay decay = 0.0004 and a batch size
of 128. The train and test accuracy over epochs are visualized
in Figure 35 and Figure 36. Loss over epochs is visualized in
Figure 37.

Fig. 35: ResNeXt Train Accuracy over Epochs

Fig. 36: ResNeXt Test Accuracy over Epochs

Fig. 37: ResNeXt Loss over Epochs

The confusion matrix of the trained model on training data
is:

The confusion matrix of the trained model on testing data
is:

3) DenseNet: The DenseNet architecture[13] is shown in
densenet.png. It is too large to be put in the report, please
check the attachment to get a better view.

There are 6956298 parameters in this model. I use a stochas-
tic gradient decent optimizer for learning, with a learning rate
lr = 0.01 and weight decay decay = 0.0004 and a batch size
of 128. The train and test accuracy over epochs are visualized
in Figure 38 and Figure 39. Loss over epochs is visualized in
Figure 40.

Fig. 38: DenseNet Train Accuracy over Epochs

Fig. 39: DenseNet Test Accuracy over Epochs

Fig. 40: DenseNet Loss over Epochs

The confusion matrix of the trained model on training data
is:

The confusion matrix of the trained model on testing data
is:

D. Comparison
All neural network performance comparsion is shown in

Table I.

Network Parameter
Number

Train
Accuracy

Test
Accuracy

Inference
Time

CNN 11,969,866 80.17 % 67.8 % 0.294 ms
Improved CNN 11,969,866 87.81 % 69.28 % 0.280 ms

ResNet 19,148,866 88.132 % 73.42 % 2.948 ms
ResNeXt 9,128,778 95.728 % 81.24 % 2.839 ms
DenseNet 6,956,298 94.668 % 86.18 % 12.081 ms

TABLE I: Neural Network Performance

According to the given performance, my opinion is that
ResNeXt is the better than the others.

Firstly, the two CNN have relatively poor performance:
they use a large number of parameters but achieve relatively
low train and test accuracy. Also, their convergence rates are
low. Then, ResNet is a little bit better than the two CNN: it
uses a large number of parameters and achieves fairly good
train and test accuracy, their convergence is also fairly well.
Both ResNeXt and DenseNet have amazing performances
and they achieve high train and test accuracy. Nevertheless,
even though DenseNet has been shown to have better feature
use efficiency, outperforming ResNeXt with fewer parameters,
DenseNet requires heavy GPU memory due to concatenation
operations and it is not memory-efficient.

Therefore, ResNeXt is a better choice compared to the other
neural networks introduced above.

REFERENCES

[1] Wikipedia. Sobel operator. URL: https://en.wikipedia.
org/wiki/Sobel operator.

[2] Nitin J. Sanket, Lening Li, and Gejji Vaishnavi Vivek.
HW0 Guidence. URL: https://rbe549.github.io/fall2022/
hw/hw0/.

[3] University of Oxford. The Leung-Malik(LM) Bank.
URL: https : / / www. robots . ox . ac . uk /∼vgg / research /
texclass/filters.html.

[4] Wikipedia. Gabor filter. URL: https://en.wikipedia.org/
wiki/Gabor filter.

[5] Mark D Fairchild and Garrett M Johnson. “Image
appearance modeling”. In: Human Vision and Electronic
Imaging VIII 5007 (2003), pp. 149–160.

[6] John Canny. “A Computational Approach to Edge De-
tection”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence PAMI-8.6 (1986), pp. 679–698.
DOI: 10.1109/TPAMI.1986.4767851.

[7] Pablo Arbelaez et al. “Contour detection and hierar-
chical image segmentation”. In: IEEE transactions on
pattern analysis and machine intelligence 33.5 (2010),
pp. 898–916.

[8] Wikepedia. Stochastic gradient descent. URL: https: / /
en.wikipedia.org/wiki/Stochastic gradient descent.

[9] Wikepedia. Cross Entropy. URL: https://en.wikipedia.
org/wiki/Cross entropy.

[10] Samuel L Smith et al. “Don’t decay the learning
rate, increase the batch size”. In: arXiv preprint
arXiv:1711.00489 (2017).

[11] Kaiming He et al. “Deep residual learning for image
recognition”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–
778.

[12] Saining Xie et al. “Aggregated residual transformations
for deep neural networks”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition.
2017, pp. 1492–1500.

[13] Gao Huang et al. “Densely connected convolutional
networks”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2017,
pp. 4700–4708.

https://en.wikipedia.org/wiki/Sobel_operator
https://en.wikipedia.org/wiki/Sobel_operator
https://rbe549.github.io/fall2022/hw/hw0/
https://rbe549.github.io/fall2022/hw/hw0/
https://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
https://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
https://en.wikipedia.org/wiki/Gabor_filter
https://en.wikipedia.org/wiki/Gabor_filter
https://doi.org/10.1109/TPAMI.1986.4767851
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Cross_entropy
https://en.wikipedia.org/wiki/Cross_entropy

	Phase 1: Shake My Boundary
	Filter Banks
	Oriented DoG Filters
	Leung-Malik Filters
	Gabor Filters

	Texton Map
	Brightness Map
	Color Map
	Texture, Brightness, Color Gradients
	Sobel and Canny baselines
	Pb-lite Output

	Phase2: Deep Dive on Deep Learning
	Train your first neural network
	Improving Accuracy of your neural network
	ResNet, ResNeXt, DenseNet
	ResNet
	ResNeXt
	DenseNet

	Comparison

