RBE549 HW0 Alohomora

Haoying Zhou Department of Robotics Engineering Worcester Polytechnic Institute Worcester, MA, 01609 Email: hzhou6@wpi.edu

Abstract—Note: Use 5 late days. For your information, I have 2 extra late days because HW0 has time conflict with my summer internship

I. PHASE 1: SHAKE MY BOUNDARY

A. Filter Banks

1) Oriented DoG Filters: The Gaussian kernel can be calculated by Equation 1:

$$g(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$
(1)

where σ is the scale of the Gaussian kernel.

To calculate the derivative of Gaussian (DoG) kernel, I use Sobel operator[1] with:

$$G_x = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$
$$G_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

As mentioned in the description[2], the derivative of the Gaussian kernel g(x, y) in x and y direction can be denoted as Equation 2:

$$\begin{aligned} \frac{\partial g}{\partial x} &= G_x \circledast g(x,y) \\ \frac{\partial g}{\partial y} &= G_y \circledast g(x,y) \end{aligned} \tag{2}$$

where \circledast represents the convolution operation.

The oriented derivative of Gaussian function is the product of gradient of Gaussian kernel and the rotation vector $r = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$. Therefore, the oriented derivative of Gaussian can be denoted as Equation 3:

$$\nabla_r g = \nabla g \cdot r = \cos \theta \frac{\partial g}{\partial x} + \sin \theta \frac{\partial g}{\partial y}$$
(3)

Then, with different σ values and orientations, I can obtain the oriented DoG filters as shown in Figure 1:

2) Leung-Malik Filters: Compared to DoG filter, the Gaussian kernel in Leung-Malik (LM) filter [3] has different variances along x and y. Therefore, the Gaussian kernel formula can be rewritten as Equation 4:

$$g(x,y) = \frac{1}{2\pi\sigma_x \sigma_y} e^{-(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2})}$$
(4)

then the first (DoG) and second derivative (Laplacian of Gaussian, LoG) of the Gaussian kernel can be calculated analytically as Equation 5:

$$\nabla g(x,y) = -\frac{x}{\sigma_x^2} \left(-\frac{y}{\sigma_y^2}\right) \frac{1}{2\pi\sigma_x\sigma_y} e^{-\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\right)} \nabla^2 g(x,y) = -\frac{1}{\pi\sigma_x^2\sigma_y^2} \left(1 - \frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2}\right) e^{\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\right)}$$
(5)

Correspondingly, the mixed first and second derivative filters can be calculated as Equation 6:

$$\frac{\partial g(x,y)}{\partial x} = -\frac{x}{\sigma_x^2} \left(-\frac{y}{\sigma_y^2}\right) \frac{1}{2\pi\sigma_x\sigma_y} e^{-\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\right)}$$

$$\frac{\partial^2 g(x,y)}{\partial x^2} = \frac{x^2 - \sigma_x^2}{\sigma_x^4} \frac{1}{2\pi\sigma_x\sigma_y} e^{-\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\right)}$$
(6)

To obtain oriented filters, I can rotate the x and y coordinates by angle θ and substitute the rotated coordinates into Equation 5 and Equation 6. The rotated coordinates can be denoted as:

$$\begin{bmatrix} x_r \\ y_r \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Eventually, with different σ values and orientations, I can obtain the LMS and LML filters shown in Figure 2 and Figure 3:

Fig. 2: Leung-Malik Small filter bank

Fig. 3: Leung-Malik Large filter bank

3) Gabor Filters: The Gabor filters can be calculated using Equation 7[4]:

$$f(x, y, \theta) = e^{-\frac{x'^2 + y'^2}{2\sigma^2}} \cos\left(2\pi \frac{x'}{\lambda} + \psi\right)$$
$$x' = x \cos \theta + y \sin \theta$$
$$y' = -x \sin \theta + y \cos \theta$$
$$\lambda = \sigma^{1.1}$$
$$\psi = 0$$
$$\gamma = 1$$
(7)

(a) Original Image

(b) Grayscale Image Fig. 5: Example Input Image

Then, I implement the filter banks using convolution one by one:

Fig. 7: Implement Leung-Malik Small filter bank

B. Texton Map

To obtain the texton map, I need to firstly implement the above filter banks to the images. To implement the filters, I need to firstly grayscale the input image and convolute the filter onto the input image. Here is an example image:

Fig. 4: Gabor filter bank

Fig. 8: Implement Leung-Malik Large filter bank

where θ is the rotation angle.

Then, with different σ values and orientations, I can obtain the Gabor filters shown in Figure 4:

Fig. 9: Implement Gabor filter bank

The filter responses for DoG, LMS, LML and Gabor filters are shown in Figure 6, Figure 7, Figure 8 and Figure 9. Then, concentrate all the filter responses into a $N \times W \times H$ array. N = 168 is the total number of filters, W and H are the dimensions of the input image. Next, the filter responses of the images are then clustered into the K = 64 textons using K-means algorithm. Then, the texton map \mathcal{T} of the example image is shown in Figure 10:

Fig. 10: Texton Map \mathcal{T} of the example image

Moreover, generate the texton maps \mathcal{T} of all images and visualize in Figure 11:

Fig. 11: Texton Map \mathcal{T} of all images

C. Brightness Map

To obtain the brightness map, I firstly need to convert the image to the Lab[5] color space. The L channel represents the brightness of the image. Then I perform K-means algorithm with K = 16 clusters on the input data. Eventually, the brightness map \mathcal{B} of all images are obtained and shown in Figure 12:

Fig. 12: Brightness Map \mathcal{B} of all images

D. Color Map

To obtain the color map, I firstly get the RGB channels of the images directly using cv2.imread(). Then, I feed the RGB channel data to K-means algorithm with K = 16. Eventually, the color map C of all images are obtained and shown in Figure 13:

Fig. 13: Color Map C of all images

E. Texture, Brightness, Color Gradients

To calculate the texture gradient \mathcal{T}_g , brightness gradient \mathcal{B}_g and color gradient \mathcal{C}_g , I will follow the instruction[2] using half-disc masks. The half-disc masks are pairs of binary images (HD_{left}, HD_{right}) of half-discs at different orientations and scales. The half-disc masks implemented are shown in Figure 14, and I resize the kernels for better visualization.

Fig. 14: Half disc masks

To calculate out the gradients, I will implement algorithm 1. K represents the number of clusters in K-means algorithm, and \circledast represents convolution operation.

Moreover, calculated texture gradient \mathcal{T}_g , brightness gradient \mathcal{B}_g and color gradient \mathcal{C}_g for Figure 5 are shown in Figure 15, Figure 16 and Figure 17.

Algorithm 1: Gradient Calculation Algorithm

Input: Texton Map \mathcal{T} , Brightness Map \mathcal{B} or Color Map \mathcal{C} , shown as img Output: Texture Gradient \mathcal{T}_g , Brightness Gradient \mathcal{B}_g or Color Gradient \mathcal{C}_g , shown as χ^2 $\chi^2 = \operatorname{img} * 0$ for i = 1 : K do tmp = img * 0 Implement following if-statement for every pixel p in img : if img[p] = i then tmp[p] == 1end if $g_i = HD_{left} \circledast tmp$ $h_i = HD_{right} \circledast tmp$ $\chi_i^2 = \frac{(g_i - h_i)^2}{2(g_i + h_i)}$ $\chi^2 + = \chi_i^2$ end for

Fig. 16: Brightness Gradient \mathcal{B}_g of the example image

Fig. 15: Texture Gradient \mathcal{T}_g of the example image

Fig. 17: Color Gradient C_g of the example image

F. Sobel and Canny baselines

The Sobel and Canny[6] baseline results are shown in Figure 18 and Figure 19:

Fig. 18: Sobel Baseline

Fig. 19: Canny Baseline

G. Pb-lite Output

To obtain the edge based on Pb-lite[7], I can use a simple equation as shown in Equation 8:

$$Pb_{edge} = \frac{\mathcal{T}_g + \mathcal{B}_g + \mathcal{C}_g}{3} \odot (0.5 * Pb_{canny} + 0.5 * Pb_{sobel})$$
(8)

Therefore, the detected edge using Pb-lite is shown in Figure 20:

		Ś	
	(r.A.r.)		

Fig. 20: Pb-Lite Baseline

Furthermore, the ground truth is shown in Figure 21:

Fig. 21: Pb-Lite Baseline

Comparing the above results, I can see that false positive edges of the Canny and Sobel baselines are suppressed in the Pb-Lite baseline while true edges still remain. This is because Pb-Lite baseline is able to use the global information of the image and also combine multi-scale information [7].

II. PHASE2: DEEP DIVE ON DEEP LEARNING

For all neural networks trained in this section, I will use stochastic gradient descent(SGD)[8] as the optimization method and cross-entropy loss[9] as the loss function. The number of epochs is 25, expect for the improving accuracy section (which is 40).

Note: some drop-out layer may not be presented on the network architectures. And if you cannot see the architecture, you may find the corresponding <model_name>.png in the attached submission.

A. Train your first neural network

The first neural network designed is a simple convolutional neural network(CNN). The CNN architecture is shown Figure 22.

Fig. 22: CNN Architecture

There are 11969866 parameters in this model. I use a stochastic gradient decent optimizer for learning, with a learning rate lr = 0.01 and weight decay decay = 0.0004 and a batch size of 32. The train and test accuracy over epochs are visualized in Figure 23 and Figure 24. Loss over epochs is visualized in Figure 25.

The confusion matrix of the trained model on training data

is:									
408	30 106	127	32	55	32	44	57	308	159 7
69	4432	24	13	15	23	39	27	108	250
25	3 31	3390	131	305	256	332	151	90	61
11	6 25	243	3143	161	672	324	154	91	71
14	9 19	190	122	3716	145	230	310	62	57
55	5 27	180	318	175	3769	158	216	45	57
28	3 26	133	72	109	91	4457	26	26	32
43	3 11	95	96	126	224	37	4283	24	61
23	1 94	41	22	12	21	24	15	4441	99
97	243	21	34	15	39	28	41	108	4374

The confusion matrix of the trained model on testing data is:

19	40	13	9	9	19	13	83	- 46 T
809	6	8	$\overline{7}$	6	9	4	23	109
7	511	34	84	87	101	48	23	20
17	75	376	63	230	92	60	26	28
4	66	52	548	42	104	111	25	5
1	68	101	40	634	35	66	22	12
9	42	35	27	27	824	9	11	10
2	31	27	46	71	6	765	4	27
46	8	8	3	8	9	11	792	35
87	4	14	4	9	10	27	40	772 _
	$ 19 \\ 809 \\ 7 \\ 17 \\ 4 \\ 1 \\ 9 \\ 2 \\ 46 \\ 87 $	$\begin{array}{cccc} 19 & 40 \\ 809 & 6 \\ 7 & 511 \\ 17 & 75 \\ 4 & 66 \\ 1 & 68 \\ 9 & 42 \\ 2 & 31 \\ 46 & 8 \\ 87 & 4 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

B. Improving Accuracy of your neural network

The improve CNN architecture is almost identical to the CNN architecture. The only difference is the batch size. And the improve CNN architecture is shown in Figure 26.

Fig. 26: Improved CNN Architecture

Multiple approaches are implemented to improve the accuracy of the original CNN:

- Standardize the data input. The data is normalized from [0, 255] to [0, 1].
- Increase the batch size to 64. [10]
- Increase the number of epochs to 40.

There are 11969866 parameters in this model. I use a stochastic gradient decent optimizer for learning, with a learning rate lr = 0.01 and weight decay decay = 0.00025 and a batch size of 64. The train and test accuracy over epochs are visualized in Figure 27 and Figure 28. Loss over epochs is visualized in Figure 29.

Fig. 27: Improved CNN Train Accuracy over Epochs

Fig. 28: Improved CNN Test Accuracy over Epochs

The confusion matrix of the trained model on training data is:

4496	51	108	31	54	24	12	41	151	92
47	4705	20	19	9	11	15	22	52	100
154	22	4070	93	253	106	131	84	51	36
58	21	198	3995	163	254	97	120	46	48
88	9	138	88	4356	66	49	163	19	24
30	18	168	241	163	4104	65	153	25	33
21	22	137	72	95	49	4535	15	26	28
32	8	108	78	118	102	18	4498	14	24
144	55	61	15	17	10	7	18	4620	53
79	143	32	21	17	23	7	29	63	4586

The confusion matrix of the trained model on testing data is:

F 754	26	53	17	13	6	9	12	65	45
18	810	14	9	6	5	6	5	27	100
66	7	581	48	117	44	58	46	21	12
26	19	100	454	84	152	52	62	15	36
25	3	73	48	664	31	44	92	15	5
19	5	82	151	57	580	20	70	9	7
9	8	54	53	64	30	743	13	9	17
12	3	49	29	59	51	2	776	4	15
81	40	19	8	3	5	4	4	805	25
L 35	94	15	14	4	6	8	30	39	761_{-}

C. ResNet, ResNeXt, DenseNet

1) ResNet: The ResNet architecture[11] is shown in Figure 30.

Fig. 30: ResNet Architecture, may check attachment for a better view

There are 19148106 parameters in this model. I use a stochastic gradient decent optimizer for learning, with a learning rate lr = 0.01 and weight decay decay = 0.0004 and a batch size of 128. The train and test accuracy over epochs are visualized in Figure 31 and Figure 32. Loss over epochs is visualized in Figure 33.

Fig. 31: ResNet Train Accuracy over Epochs

Fig. 32: ResNet Test Accuracy over Epochs

Fig. 33: ResNet Loss over Epochs

The confusion matrix of the trained model on training data is:

Ľ	4367	20	216	35	33	24	14	22	216	53]	(0)
C	32	4745	15	14		23	14		68	77]	(1)
Ľ	128	11	4283	142	111	120	92	47	44	22]	(2)
C	57	13	162	3972	81	418	106	70	69	52]	(3)
Ľ	67		172	164	4215	134	40	156	35	15]	(4)
Ľ	36		118	296	94	4199	50	149	23	27]	(5)
Ľ	21	11	130	146	111	107	4402	25	27	20]	(6)
Ľ	32		90	101	85	110	11	4544	15	9]	(7)
C	69	43	34		12	14		10	4777	26]	(8)
Ľ	78	165	28	21	10	23		26	81	4562]	(9)
Ĩ	(0)	(1) (2	2) (3)) (4)	(5)	(6) (1	7) (8)	(9)			

The confusion matrix of the trained model on testing data is:

[754	14	69	20	12	3	5	13	84	26]	(0)
I	22	837	8	10	3	10	11	3	33	63]	(1)
I	47	3	688	64	60	54	37	25	14	8]	(2)
I	30	5	64	531	46	191	51	35	30	17]	(3)
I	20		81	80	649	36	33	79	16	2]	(4)
[12	6	43	142	32	667	18	59	13	8]	(5)
I	5	6	41	73	38	48	756	13	10	10]	(6)
I	29	3	32	35	43	50		794	3	7]	(7)
I	33	19	15	11	5	6	1	3	892	15]	(8)
I	40	77	14	17		11		19	44	774]	(9)
	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	

2) ResNeXt: The ResNeXt architecture[12] is shown in Figure 34.

Fig. 34: ResNeXt Architecture, may check attachment for a better view

There are 9128778 parameters in this model. I use a stochastic gradient decent optimizer for learning, with a learning rate lr = 0.01 and weight decay decay = 0.0004 and a batch size of 128. The train and test accuracy over epochs are visualized in Figure 35 and Figure 36. Loss over epochs is visualized in Figure 37.

Fig. 35: ResNeXt Train Accuracy over Epochs

Fig. 36: ResNeXt Test Accuracy over Epochs

Fig. 37: ResNeXt Loss over Epochs

The confusion matrix of the trained model on training data is:

	4850	5	54	11	6	13	5	15	10	31]	(0)
		4894				12				70]	(1)
	47		4807		15	54	41	19		5]	(2)
l			89	4175	50	544	84	34		12]	(3)
l	10	1	62	25	4782	43	33	38		2]	(4)
			49	48	31	4794	23	49	2	2]	(5)
		1	45	14		56	4866		1	3]	(6)
		1	35	18	17	61		4851	1	1]	(7)
	28	13	11						4920	10]	(8)
	14	13	17			13				4925]	(9)
	(0)	(1) (2	2) (3)) (4)	(5)	(6) (7	7) (8)) (9)			

The confusion matrix of the trained model on testing data is:

I	806	12	70	9	10	6	11	15	28	33]	(0)
I	9	891	6	2	3	9	6	1	5	68]	(1)
E	25	1	776	11	37	67	66	12	2	3]	(2)
E	6		86	502	32	268	68	18	8	8]	(3)
E	8	1	89	15	758	40	41	44	4	0]	(4)
I	3	Θ	38	41	25	841	17	29	1	5]	(5)
I	5	2	36	7	11	46	888	4	1	0]	(6)
E		1	31	10	21	68		852	1	8]	(7)
E	48	12	14	5	2	4	3	1	893	18]	(8)
I	14	23	10	8	3	5	3	8	9	917]	(9)
	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	

3) DenseNet: The DenseNet architecture[13] is shown in densenet.png. It is too large to be put in the report, please check the attachment to get a better view.

There are 6956298 parameters in this model. I use a stochastic gradient decent optimizer for learning, with a learning rate lr = 0.01 and weight decay decay = 0.0004 and a batch size of 128. The train and test accuracy over epochs are visualized in Figure 38 and Figure 39. Loss over epochs is visualized in Figure 40.

Fig. 38: DenseNet Train Accuracy over Epochs

The confusion matrix of the trained model on training data is:

[4787	4	84	18	16	20	8	35	22	6]	(0)
	22	4929		10						12]	(1)
	74	1	4609	80	51	75	82	28		0]	(2)
[46	4579	48	253	51	12		0]	(3)
	10		76	78	4727	45	36	27		0]	(4)
			30	195	39	4677	11	41		0]	(5)
[34	48	12	37	4857			0]	(6)
			26	91	26	132		4717		0]	(7)
	130	12	37	28	15		23	16	4721	12]	(8)
[33	118	16	28	13	16	10	32		4731]	(9)
	(0) ((1) (2	2) (3)) (4)	(5)	(6) (1	7) (8)) (9)			

The confusion matrix of the trained model on testing data is:

[890	4	44	12	8	2	7	16	11	6]	(0)
[6	959	5	4	1	Θ	1	2	5	17]	(1)
[35	Θ	799	39	28	40	49	10		0]	(2)
[6	2	24	782	23	109	38	11	3	2]	(3)
[5	Θ	49	38	838	25	23	21	1	0]	(4)
[3	Θ	20	85	18	854	6	14		0]	(5)
[7	Θ	17	33	5	20	917	Θ	1	0]	(6)
[Θ	11	32	27	59	4	862		1]	(7)
[67	14	17	7	9	4	6	4	863	9]	(8)
[16	67	6	12	7	6	6	13	13	854]	(9)
	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	

D. Comparison

All neural network performance comparsion is shown in Table I.

Natural	Parameter	Train	Test	Inference
INCLWOIK	Number	Accuracy	Accuracy	Time
CNN	11,969,866	80.17 %	67.8 %	0.294 ms
Improved CNN	11,969,866	87.81 %	69.28 %	0.280 ms
ResNet	19,148,866	88.132 %	73.42 %	2.948 ms
ResNeXt	9,128,778	95.728 %	81.24 %	2.839 ms
DenseNet	6,956,298	94.668 %	86.18 %	12.081 ms

TABLE I: Neural Network Performance

According to the given performance, my opinion is that ResNeXt is the better than the others.

Firstly, the two CNN have relatively poor performance: they use a large number of parameters but achieve relatively low train and test accuracy. Also, their convergence rates are low. Then, ResNet is a little bit better than the two CNN: it uses a large number of parameters and achieves fairly good train and test accuracy, their convergence is also fairly well. Both ResNeXt and DenseNet have amazing performances and they achieve high train and test accuracy. Nevertheless, even though DenseNet has been shown to have better feature use efficiency, outperforming ResNeXt with fewer parameters, DenseNet requires heavy GPU memory due to concatenation operations and it is not memory-efficient.

Therefore, ResNeXt is a better choice compared to the other neural networks introduced above.

REFERENCES

- [1] Wikipedia. *Sobel operator*. URL: https://en.wikipedia. org/wiki/Sobel_operator.
- [2] Nitin J. Sanket, Lening Li, and Gejji Vaishnavi Vivek. HWO Guidence. URL: https://rbe549.github.io/fall2022/ hw/hw0/.
- [3] University of Oxford. *The Leung-Malik(LM) Bank*. URL: https://www.robots.ox.ac.uk/~vgg/research/ texclass/filters.html.
- [4] Wikipedia. *Gabor filter*. URL: https://en.wikipedia.org/ wiki/Gabor_filter.
- [5] Mark D Fairchild and Garrett M Johnson. "Image appearance modeling". In: *Human Vision and Electronic Imaging VIII* 5007 (2003), pp. 149–160.
- [6] John Canny. "A Computational Approach to Edge Detection". In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* PAMI-8.6 (1986), pp. 679–698. DOI: 10.1109/TPAMI.1986.4767851.
- [7] Pablo Arbelaez et al. "Contour detection and hierarchical image segmentation". In: *IEEE transactions on pattern analysis and machine intelligence* 33.5 (2010), pp. 898–916.
- [8] Wikepedia. *Stochastic gradient descent*. URL: https:// en.wikipedia.org/wiki/Stochastic_gradient_descent.
- [9] Wikepedia. *Cross Entropy*. URL: https://en.wikipedia. org/wiki/Cross_entropy.
- [10] Samuel L Smith et al. "Don't decay the learning rate, increase the batch size". In: arXiv preprint arXiv:1711.00489 (2017).
- [11] Kaiming He et al. "Deep residual learning for image recognition". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770– 778.
- [12] Saining Xie et al. "Aggregated residual transformations for deep neural networks". In: *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2017, pp. 1492–1500.
- [13] Gao Huang et al. "Densely connected convolutional networks". In: *Proceedings of the IEEE conference* on computer vision and pattern recognition. 2017, pp. 4700–4708.