Homework 0 - Alohomora

Shiva Kumar Tekumatla
MS Robotics Engineering
Worcester Polytechnic Institute
stekumatla@wpi.edu

Abstract—In this work, I presented the simplified version
of Probability of Boundary (pb lite) detection algorithm, and
built Convectional Neural Network(CNN) algorithm for Image
classification. Results of pb lite are compared with Canny,
and Sobel edge detection algorithms. Overall proved that pb
lite outperforms the Sobel and Canny for edge detection. To
train and test CNNs , I used CIFAR-10 dataset , and explored
different methods such as ResNet, ResNeXt and DenseNet to
improve the classification accuracy.

I. INTRODUCTION

In computer vision , detecting boundaries in a given image
has been a well studied problem that can determine the
various transitions from one a layer to an another in a given
image. Detecting boundaries using one image is a difficult
problem to solve, and generally detecting boundaries can
require object-specific reasoning, and this may make this
process difficult. A well presented solution to this problem is
to study intensity discontinuities in the given image. These
discontinuities are usually called edges.

Two classical methods to solve this problem,Canny and
Sobel edge detection algorithms, look for these disconti-
nuities. In this work, these two classical algorithms are
compared against Probability of Boundary detection algo-
rithm or simply called PB edge detection algorithm. In
this work, I proved that PB algorithm outperforms both the
aforementioned classical algorithms. Main advantage of this
algorithm is that it considers texture and color discontinuities
in the given image, and helps in suppressing false positives.
These false positives produced in the textured regions are not
usually handled by classical edge detection algorithms.

In phase 1 of this work,I developed a simplified version
of PB algorithm that is called pb lite. pb lite uses brightness,
color and texture information across different scales, and pro-
vides a per-pixel probability of boundary. Even thissimplified
boundary detector will still significantly outperform the well
regarded Canny and Sobel edge detectors. In this work, a
evaluated the ground truth qualitatively from a subset of the
Berkeley Segmentation Data Set 500 (BSDS500).

In phase 2 of this work, I implemented multiple neural
network architectures and compared them using different
criterion such as number of parameters, train and test ac-
curacies. For this work, I used CIFAR-10 dataset. This is
a dataset consisting of 60000, 32x32 colour images in 10
classes, with 6000 images per class. There are 50000 training
images and 10000 test images.

II. PHASE 1 - SHAKE MY BOUNDARY

There are multiple steps in the design pipeline of pb
lite algorithm. These steps are: 1) Creating Filter Banks 2)
Texton Map 3) Brightness Map 3) Color Map 4) Texture,
Brightness and Color Gradients. The general pipeline is given
by Figure 1 .

Half disk
Masks
Filter using K-Means
Filter Banks Clustering T
Grayscale K-Means B 1 distance
Clustering
c

Optional
Image
o 7,,35.Cy

» - Color Space
- Conversion K-Means
Input Clustering
Canny/Sobel
Edges Pb
phrlite
Output

Overview of the pb lite pipeline

¥
‘:"/D
§
o

Fig. 1.

A. Filter Banks

The first step of the pb lite boundary detection pipeline
is to filter the image with a set of filter banks. I created
three different types of filterbanks in this step. They are
: 1) Oriented DoG Filters 2)Leung-Malik Filters 3) Gabor
Filters. A given image is filtered using either with ine of
these filters or with a combination of them. After this step,
a texton map that can depict the texture in the image by
clustering responses with respect to each filter is generated.

Since this is the first step in finding out the edges , this step
is an important part of building low level features that we are
interested in. These filter banks are used for two purposes, to
measure texture properties and to aggregate regional texture
and brightness distributions.

1) Oriented DoG Filters: Oriented Difference of Gaus-
sian (DoQ) filters are simply the Gaussian filters convolved
with Sobel operators, and then rotating the results. Usually
oriented DoG filters are generated with « orientations (from
0 to 360 degrees) and 3 scales, we should end up with a total
of a:x 3 filters. In this work, I used three different scales with

16 orientations each. The scales used are :1,1.5,2 . Result of
this filter bank is given by Figure 2 .

Fig. 2. Oriented DoG Filter Bank

2) Leung-Malik Filters: There are a total of 48 filters in
the Leung-Malik(LM) filter bank. This filter bank consists
of first and second order derivates of Gaussian filters at six
different orientations, and three scales, eight Laplacian of
Gaussian (LoG) filters , and four Gaussian filters. There are
two different version of LM filters , namely LM Small (LMS)
and LM Large (LML). In LMS, scales used are: 1, \/5,2, and
2/2 where as in LML , scales used are v/2, 2, 21/2 and 4.
Result of LM filter bank is shown in Figure 3 .

/

\

N
e

:
-

Fig. 3. Leung-Malik filter bank

3) Gabor Filters: Gabor filter is a type of linear system
used for texture analysis . This filter works on basis of
analysing specific frequency content in the image in specific
directions in a localized region around the point or region of
analysis. In this work I created a total of 25 Gabor filters.
This result is shown by Figure 4 .

Gabor Filters are designed based on the filters in the
human visual system. A gabor filter is a gaussian kernel
function modulated by a sinusoidal plane wave

Fig. 5. Input Images

B. Texton Map

Filtering an input image with each element of your filter
ban results in a vector of filter responses centered on each
pixel. We can cluster each pixel by using kmeans clus-
tering algorithm. Each pixel is then represented by a one
dimensional, discrete cluster ID instead of a vector of high-
dimensional, real-valued filter responses. For this previously
generated Oriented DoG filter bank is used.Three different
input images shown in Figure 5 are used for subsequent
operations. Result of texton map on different images is
shown in Figure 6 .

C. Brightness Map

The concept of the brightness map is as simple as captur-
ing the brightness changes in the image. Here, I clustered the
brightness values using kmeans clustering. I chose a total of
16 clusters. Results of brightness maps are shown in Figure

Fig. 7. Results of Brightness Map

Fig. 8. Results of Color Map

D. Color Map

The concept of the color map is to capture the color
changes or chrominance content in the image. Here, I again
clustered the color values using kmeans clustering into 16
clusters. Results of color map are shown in Figure 8

E. Half Disk Masks

The half-disc masks are simply (pairs of) binary images
of half-discs. These discs allow us to compute the x? (chi-
square) distances (finally obtain values of gradients) using
a filtering operation, which is much faster than looping
over each pixel neighborhood and aggregating counts for
histograms. Half disc masks at different scales and sizes are
shown in Figure 9 .

="RINT(EFd
E=NRENdP]
=" RN (B4
" | D7]
= "AINE (R4
wl* | NE [D”]o

Fig. 9. Half Disk Masks

F. Texture, Brightness and Color Gradients

Texture , Brightness and Color gradients encode how much
the texture, brightness and color distributions are changing
at a pixel. We compute these by comparing the distributions
in left/right half-disc pairs centered at a pixel. If the dis-
tributions are the similar, the gradient should be small. If
the distributions are dissimilar, the gradient should be large.
Because our half-discs span multiple scales and orientations,
we will end up with a series of local gradient measurements
encoding how quickly the texture or brightness distributions
are changing at different scales and angles. The results of
these gradients are shown by Figures 10, 11, and 12.

Fig. 10. Results of Texture Gradient

Results of Brightness Gradient

Fig. 11.

G. Sobel and Canny baselines

Already provided Sobel and Canny Baselines are given by
Figure 13, and 14 respectively.
H. Pb-lite Output

Output from each gradient is combined with Sobel and
Canny baselines to get Pb-lite output. This output can be
computed using equation 1 .

(Tg + By + Cg)
3
The result of pb lite is given by Figure 15.

Pb= o (w1 X canny + ws X sobel) (1)

1. Observations

Based on the results provided here , we can say that pb
lite performed slightly better than the other two baselines in
certain aspects. For example, for images with more texture,
both Sobel and Canny generated too many false positives
while the pb lite suppressed these false positives. Overall
, pblite provided the soft edges while the other two have
comparatively rough edges. However, in some cases it seems
that canny and Sobel outperformed the pb lite algorithm. This
can be corrected by experimenting with the various varibles
that are used in the algorithm design such as scale , size ,
number of clusters and radius of Half Disk Masks.

Fig. 12. Results of Color Gradient
Fig. 13. Sobel edge detection baseline

III. PHASE 2 - DEEP DIVE ON DEEP LEARNING

In this section , different neural netwrok architecture are
impemented. A randomized version of the CIFAR-10 dataset
with 50000 training images and 10000 test images is used
for this part.

A. Train your first neural network

For this section , I used the given dataset and trained it
with the CNN that is of the structure input - conv - pool -
conv - pool - linear - linear -output . The training loss, and
accuracy are shown in Figure 16, and 17 respectively.

Fig. 14. Canny edge detection baseline

LossEverylter
tag: LossEverylter

Fig. 16. Training error

Accuracy
tag: Accuracy

Fig. 17. Training accuracy

As observed here , the above defined neural network did
not provide good results. The hyper parameters tried here are
epoch size of 5, and batch size of 500. This trained model
did not perform well on test data either. This model gave an
overall accuracy of 10.8 percentage. The confusion matrix is
given by Figure 18.

By changing the output layers of first convolution network,
there accuracy improved to 46.78 percentage. The results for
this are shown by Figures 19 , 20 and ??.

Fig. 15. Pb lite output

[7
[1
[1
[0
[1
[0
[0
[0
[0
[0

Accuracy
tag: Accuracy

(==l olol =Rl

993
999
999
1000
999
1000
1000
1000
1000
1000

(=Nl olol-E-R-h -]
(=N« -R-BoN-]
(==l loolol == -]
(=N« -R-BoN-]

Fig. 18. Confusion Matrix

Fig. 19. Training accuracy

LossEverylter
tag: LossEverylter

(595
42
93
22
51
15

L e B B B B

[286
[61

64
676
34
23
17
11
18
19
101
220

Fig. 20. Training error

60 40 11 11 23

6 31 1 9 26
212 151 117 134 127
51 430 16 214 126
112 136 238 103 181
62 256 25 442 61
33 179 62 34 612
23 125 32 131 55
18 32 1 5 16

7 49 2 14 47

Fig. 21. Confusion Matrix

OO O OO0 OO OO

35
18
90
73
131
108
33
545
21
45

(==l =-R- -]
(=]
—

101 60]
37 154]
17 25]

16 15]

423 97]
50 505]

