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Abstract—There are two phases of this homework, Phase
1 and Phase 2 respectively. Phase 1 is about developing pb
(probability of boundary) boundary detection computer vision
algorithm which significantly outperforms the classical methods
of edge detection like Canny and Sobel baselines. Phase 2
of the homework focuses on image classification using Deep
learning approach which has become famous in recent times.
Various Neural networks are trained on CIFAR-10 dataset and
their performances in terms of accuracy and losses have been
compared.

Index Terms—Computer vision, Boundary detection, Deep
learning.

I. PHASE 1 : SHAKE MY BOUNDARY
A. Introduction

In Phase 1 of homework, a simplified version of Proba-
bility of boundary detection algorithm is developed, which
finds boundaries by examining brightness, color, and texture
information across multiple scales in the image. This boundary
detector outperforms the Canny and Sobel detectors as it
suppresses the false positives that the other methods produce
in textured regions. The implementation of the algorithm has
been tested on Berkeley Segmentation Dataset 500.
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Fig. 1: Overview of the Pb lite pipeline.

The first step of the pipeline is to filter the image with
a set of filter banks. Once filtered a texton, brightness and
color map is generated by clustering the filter responses. Then
the image gradients can be calculated which show how much
the texture, brightness and color distributions are changing
at a pixel. Finally, the gradient outputs are combined with
Sobel and Canny baselines using appropriate weights to get
the required result.

B. Filters

Images are filtered using a collection of filters to mea-
sure texture properties and to aggregate regional texture and
brightness distributions. Three different sets of filter banks are
created for this purpose.

1) Oriented Derivative of Gaussian (DoG) Filters: A sim-
ple DoG filter is created by convolving a Sobel filter and
a Gaussian kernel.This filter can then be rotated at different
scales to find a series of oriented DoG filters.

Fig. 2: Oriented DoG filter bank with kernel size = 50 and o
=[3, 5]

2) Leung-Malik Filters: The Leung-Malik filters are a set of
multi scale, multi orientation filter bank with 48 filters. Filters
consists of first and second order derivatives of Gaussian with
3 different scales and 6 orientations, 8 Laplacian filters and 4
basic gaussian kernels.
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Fig. 3: Larger Leung-Malik filters
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3) Gabor Filters: A Gabor filter is a gaussian kernel
function modulated by a sinusoidal plane wave.

EEZONSSE
EEZINSSE
EEENnEES
EEEmEN =

Fig. 4: Gabor filter bank with o = [3, 5, 7, 9, 12]



C. Texton, Brightness, and Color Map

To create Texton maps all the filters (total 120) are applied
to the image and a stack of resultant outputs are obtained.
Now the task is to group the pixels having similar texture
properties and give a discrete texton ID to each pixel. This is
done by using KMeans clustering method where the similar
pixel values will be assigned to one cluster. In this case, 64
cluster centers are being used to categorize each pixel. More
number of clusters means more detail about the texture and
vice-versa. In Fig. 5 the differnce in the texton maps output
by using different number of clusters can be seen.

c) Original image and color maps with K = 8 and 16

Fig. 5: Difference between maps by varying number of clusters

Similar to the texton map, brightness maps and color maps
are created for the same image. For the brightness map
grayscale version of the original image is used whereas for
the color map RGB image is used. 16 clusters are used in
case of both brightness and color maps. Fig 5 b) and Fig 5 c)
can be referred to see the difference between brightness and
color maps with cluster size 8 and 16. For better results 64, 16
and 16 clusters are finalized for texton, brightness and color
map respectively. Results on the BSDS500 dataset can be seen
in Fig 6.
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J) Texton, brightness and color maps for image 10

Fig. 6: Texton, brightness and color map of all images

D. Texton, Brightness, and Color Gradients

To calculate the gradients of maps, half disc masks of
different scales and sizes are used. These masks helps to
calculate chi-square distances using a filtering operation.Fig
7 shows half disc masks.
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Fig. 7: Half disc masks with o = [5, 10, 15]

The texture, brightness and color gradient shows how much
the texture, brightness and color distributions are changing at a
pixel. Gradients are calculated by comparing the distributions
in left/right half-disc pairs. Fig 8 can be referred for the outputs
of texton, brightness and color gradients for all the images.

f) Texton, brightness and color gradients for image 6

J) Texton, brightness and color gradients for image 10

Fig. 8: Texton, brightness and color gradient of all images

E. Pb-lite Output

The final step in the pipeline is to combine the gradients
with features from Sobel and Canny detectors by using the
simple equation below:

(Ty + By +Cy)

PbEdges = 3

® (wy * cannyPb + ws * sobel Pb)

Here wl and w2 are taken as 0.5 each. The comparison
between Canny baseline, Sobel baseline and Pb-lite output is
shown in Fig.9.

a) Canny, Sobel and Pb-lite output of image 1

b) Canny, Sobel and Pb-lite output of image 2




c) Canny, Sobel and Pb-lite output of image 3

d) Canny, Sobel and Pb-lite output of image 4

e) Canny, Sobel and Pb-lite output of image 5

f) Canny, Sobel and Pb-lite output of image 6

g) Canny, Sobel and Pb-lite output of image 7

h) Canny, Sobel and Pb-lite output of image 8

i) Canny, Sobel and Pb-lite output of image 9

J) Canny, Sobel and Pb-lite output of image 10

Fig. 9: Canny, Sobel and Pb-lite outputs

F. Results analysis

It can be noticed in the comparison that Canny baseline
gives too many false positives whereas Sobel baseline output
is a little too suppressed. The Pb-lite output performance lies
in between these two where output is just enough suppressed
that it neither gives any false positives like canny baseline and
nor does it hide the important features as is the case in sobel.
Except image 3 and 9 the Pb-lite edge detector has done quite
a good job. Maybe if the parameters are optimized further even
better results can be obtained.

II. PHASE 2: DEEP DIVE ON DEEP LEARNING
A. Introduction

In Phase 2 of this homework multiple neural network
architectures are implemented on CIFAR-10 dataset and their
performance on the basis of loss and accuracy are compared
against each other. Also, various methods to improve this
classification task such as data augmentation, normalization,
regularization, etc to increase the accuracy and at the same
time reduce over-fitting on the training data. CIFAR-10 dataset
consists of 32x32 size 50,000 training and 10,000 test images.
All the images are classified into total 10 classes.

B. First Neural Network - LeNet

Convolutional Neural networks are the most commonly em-
ployed models for image classification. So, as a first approach
to the CIFAR-10 dataset a very basic neural network architec-
ture called the LeNet is implemented. The basic architecture
of the LeNet can be seen in the Fig. 10. there are total
3 convolutional layers of the network. Activation fucntion
used after each layer is tanh and Average pooling is used to
downsample the feature maps after each convolutional layer.
At the end linear layers are used to classify the images into
10 classes.

l Input
[ convad(sxs) |
Tanh
AvgPool
[ cowvad(sxs) )

Tanh
AvgPool

[ cowvad(sxs)

Tanh
Flatten

( Linear(120, 48) )

Tanh

( Linear(48, 10) ]
l Output

Fig. 10: LeNet architecture



TABLE I: Hyperparameters for LeNet architecture

Hyper-parameter | Value
Optimizer Adam
Learning rate le-3

Mini Batch Size 128
Epochs 30

Table 1 can be referred for the hyperparameters used with
LeNet architecture. Withour any data normalization and data
augmentation the accuracy and loss values were very poor.
Accuracy and loss plots over train set and test set can be seen
in Fig. 11 and Fig. 12. The total number of parameters for the
model are 57,290. Also, the confusion matrix for the train set
and test can be referred from Fig 13 and Fig 14.
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Fig. 11: LeNet model - Accuracy vs Epochs

The train set accuracy was over 0.7 in about 30 epochs and
it was still increasing but test set accuracy kind of remain
unchanged after 10 epochs which clearly shows the problem
of overfitting. Also, overfitting trend can be noticed in loss
vs epoch plot in Fig 12 where loss starts to increase after a
certain number of epochs.
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Fig. 12: LeNet model - Loss vs Epochs
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Fig. 14: LeNet model - Confusion matrix on test set

C. Improved neural network

First of all to reduce the overfit problem it was decided

to augment the data and generate some randomness in the
model. Also, the data was normalized as per the mean and
standard deviation values for the CIFAR-10 dataset. The model
architecture was also changed, network was made more deep
with additional convolutional layers with added dropout layer
to regularize the gradients and reduce overfitting as well. The
model was inspired from VGG-11 but has some changes to it
as per the CIFAR-10 dataset.
Augmmentation methods used are Random crop after padding
the image by 4 and then random horizontal flip with a
probablity of 0.5, which are commonly used data augmentation
methods for CIFAR-10.

! Input
([ cow2d33) ]
RelLU
MaxPool
[ Conv 2d (3x3) ]

RelLU
MaxPool

[ Conv 2d (3x3) ]
RelLU

MaxPool

[ Conv 2d (3x3) ]

RelLU
MaxPool
Flatten

( Linear(2048,512) |

RelLU
Dropout(0.2)

[ Linear(512, 10) ]
l Output

Fig. 15: Modified model architecture



TABLE II: Hyperparameters for Modified model architecture

Hyper-parameter | Value
Optimizer Adam
Learning rate le-3

Mini Batch Size 128
Epochs 20
Dropout 0.2

Table II can be referred for the hyperparameters used with
modified architecture. Significant improvement can be noticed
after data augmentation and a deep neural network. Accuracy
and loss plots over train set and test set can be seen in Fig.
16 and Fig. 17. The total number of parameters for the model
are 2,605,194. Also, the confusion matrix for the train set and
test can be referred from Fig 18 and Fig 19.
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Fig. 16: Modified model - Accuracy vs Epochs

The model worked really well and reached 0.80 accuracy
within just 3 epochs. the train accuracy reached about 0.9 and
still increasing after 20 epochs but the test set accuracy became
consistent and there is a little overfitting in the model as can
be seen in Fig. 16 and fig. 17 but this much overfit is expected
on the train set.
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Fig. 17: Modified model - Loss vs Epochs
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Fig. 19: Modified model - Confusion matrix on test set

D. ResNet

As per the general behaviour of neural networks it is
assumed that as we go deeper and deeper into the networks the
performance should increase. But many other problems arises
as we build a model with deep layers. First problem is the
bigger the network more difficult it is to train and second
problem is of vanishing gradients as the gradient is back-
propagated to the earlier layers. Due to vanishing gradients the
model becomes saturated because of the negligible gradients
it doesn’t learn anything new.

|3

( convad-BN-RelUu |

l 64
(' conv 2d-BN-ReLU-Pool ]
'1 28
[ Residual block 1 ] n
128 ([ convad-BN-Retu |
[ conv 2d-BN-ReLU-Pool ] l n
,256 [ convad-BN-RelU |
( conv 2d-BN-ReLU-Pool ] n
'51 2
[ Residual block 2 ] A —
l512
( Classifier ) Residual block
| Output

Fig. 20: ResNet architecture

The main idea of the ResNet architecture is to add a skip
connection from previous layer as shown in Fig. 20. Adding
skip connection (identity connections) makes sure that the
model performance doesn’t degrade if not increasing as such.
Also, the model learns from the features from previous layers.



In this homework ResNet 9 architecture has been used where
three such residual blocks are stacked one after the other with
convolution and pooling layers in between.

TABLE III: Hyperparameters for ResNet architecture

Hyper-parameter | Value
Optimizer Adam
Learning rate le-3

Mini Batch Size 128
Epochs 50
Dropout 0.2

Weight decay le-4

Table 1 can be referred for the hyperparameters used with
modified architecture. Significant improvement can be seen
from the earlier networks. Accuracy and loss plots over train
set and test set can be seen in Fig. 21 and Fig. 22. The total
number of parameters for the model are 6,575,370. Also, the
confusion matrix for the train set and test can be referred from
Fig 23 and Fig 24.
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Fig. 21: ResNet model - Accuracy vs Epochs
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Fig. 22: ResNet model - Loss vs Epochs

The model worked really well and reached 0.95 training
accuracy after training over 30 epochs. The test accuracy
reached about 0.9 and became saturated hinting that the model
started to overfit after that point.
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Fig. 24: ResNet model - Confusion matrix on test set

E. DenseNet

DenseNet architecture employs the basic idea of skip con-
nections (adding earlier layers) but the only difference is that
in each DenseNet block output of all the preceding layers is
fed into the current layer. Also one more main difference is
that unlike residual block the outputs are stacked in dense
block and not just added as done in residual blocks. This can
be better understood by the dense block configuration shown
in Fig. 25.

Input

L3
[ Conv 2d ]

! 24 +
[ Dense Block 1 ]

Batch Norm|

168
[ Transition layer 1 ] l

l 84 RelLU
[ Dense Block 2 ] l

228 Conv 2d

[ Transition layer 2 ] l

l1 14 Avg Pool
[ Dense Block 3 ]

1258 . .
[ Classifior ] Transition layer ;3

l 10 Dense Block

Output (growth rate = 12)

Layers/block =12

Fig. 25: DenseNet - 40 architecture

For the ease of adding connections the image size is
not changed. That’s why to downsample the data, transition
layers mainly consisting of convolution and pooling layers are
employed. One more advantage of DenseNet is that it uses



very fewer parameters than ResNets but still give equivalent
results. The DenseNet employed in this paper is DenseNet-40
which has 3 denseblocks each having 12 layers and in between
each block the growth rate of the width of the network is also
12. For better understandinfg Fig. 25 can be referred.

TABLE IV: Hyperparameters for DenseNet architecture

Hyper-parameter | Value
Optimizer Adam
Learning rate le-3

Mini Batch Size 128
Epochs 25
Weight decay le-4

Table 1 can be referred for the hyperparameters used with
DenseNet architecture. Accuracy and loss plots over train set
and test set can be seen in Fig. 26 and Fig. 27. The total
number of parameters for the model are 489,112. Also, the
confusion matrix for the train set and test can be referred from
Fig 28 and Fig 29.
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Fig. 26: DenseNet model - Accuracy vs Epochs
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Fig. 27: DenseNet model - Loss vs Epochs

The train set accuracy crossed 0.95 mark whereas best test
accuracy is around 0.9.
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Fig. 28: DenseNet model - Confusion matrix on train set
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Fig. 29: DenseNet model - Confusion matrix on test set

F. ResNeXT

ResNeXt architecture is based on the combination of Resnet
and Inception module as it follows split-tranform-merge prin-
ciple from Inception module and residual blocks like Resnets.
According to ResNeXt paper instead of forming deep neural
network we can achiwve the same performance by increasing
the cardinality and training the same data by dividing into
groups and then merging their outputs. ResNeXt architecture
uses very less model parameters as compared to other well
known networks. Fig. 15 can be referred for the modified
neural network architecture.

Input
.3
( Conv 2d (1x1 ) n
64 [ Conv 2d (1x1) ]
[ Block 1, ;tride =1 ] n/2 2
l256 Conv 2d( 3x3) Conv 2d(3x3)
[ Block 2, stride =2 ] n
l512 Conv 2d (1x1)
[ Block 3, stride =2 ] 2n
l‘] 024 Conv 2d (1x1)
[ Classifier ] 2n
l 10
Output Block (cardinality =2)

Fig. 30: ResNeXT architecture

In this homework, the simplest ResNeXt architecture is
implemented using cardinality as 2. The width (channels) of
the network are increased after each block. One thing to note
in this architecture is that here stride is used to downsample
the data. For e.g. stride of 2 is used to reduce the image size
by half.



TABLE V: Hyperparameters for ResNeXT architecture

Hyper-parameter | Value
Optimizer Adam
Learning rate le-3
Mini Batch Size 128
Epochs 30
Weight decay le-4

Table V can be referred for the hyperparameters used with
ResNeXt architecture. Accuracy and loss plots over train set
and test set can be seen in Fig. 31 and Fig. 32. The total
number of parameters for the model are 3,270,794. Also, the
confusion matrix for the train set and test can be referred from
Fig 33 and Fig 34.
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Fig. 34: ResNeXT model - Confusion matrix on test set

for more time can be achieve better accuracy. But still the
main concepts that had to be learned can be interpreted from
this data. Table VI can referred for the detailed comparison.

TABLE VI: Comparison of all CNN’s

Fig. 31: ResNeXT model - Accuracy vs Epochs
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Network Test Accuracy | Model Parameters
LeNet 55.2% 57,290
VGG-11 83.67% 2,605,194
ResNet-9 89.12% 6,575,370
DenseNet-40 88.85% 489,112
ResNeXt 76.31% 3,270,794

The train and test accuracy is around 0.85 but it can further
increase if the model is allowed trained for further epochs.
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Fig. 32: ResNeXT model - Loss vs Epochs

G. Comparison of all Networks

A detailed comparison on the basis of accuracy, and model
parameters is done. All the models vary in their depth of
network architecture and their key principles. Although this
comparison can’t be exact as most of the models if trained

It can be seen how initial LeNet without must depth and any
data augmentation method performed poorly on the model.
Then VGG-11 inspired model improved the accuracy which
had employed a deeper network and data augmentation and L2
regularization. The next ResNet 9 model increased accuracy
further but has also the maximum number of model parameters
crossing 6 million. DenseNet architecture as discussed also
provided results comparable to ResNet but has parameters only
1/10 of those of ResNet. ResNeXt model also has almost half
the model parameters as compared to ResNet and its accuracy
can be further increased by increasing cardinality and training
for more time.
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