
RBE 549: Homework0 - Alohamora
Tript Sharma

Department of Robotics Engineering
Worcester Polytechnic Institute

Email: tsharma@wpi.edu
Using 1 late day

Fig. 1. DoG Filters (with σ = 1,3)

Fig. 2. LM (Large) Filters

I. PHASE 1: SHAKE MY BOUNDARY

The first task of the assignment was to perform pb-lite edge-
detection, a simplified version of the pb boundary detection
algorithm, on a set of images and compare them with the
traditional edge-detection algorithms like sobel and canny. Pb-
lite algorithm uses more than just intensity discontinuities
in the image. It analyses multiple properties of the images
like the intensity, color and texture discontinuities returning a
probabistic output classifying each pixel as part of an edge or
not. The algorithm has four stages:

1) Filter bank generation
2) Texton, Brightness and Color map generation
3) Gradient map generation
4) pb-lite edge output

A. Filter bank generation

Filter bank is an array of bandpass filters that separate the
the input signal into multiple components ??. In other words,
it is a set of maps that activate when they find a similar
distribution of pixels in the image. Here, I used a combination
of DoG filters, LM filters and Gabor filters to create the filter
bank. Each consisting of 32, 96 (2 sets of 48 filters in different
scales) and 40 filters respectively. Figures 1, 2 and 3 show the
Derivative of Gradient (DoG), Leung-Malik and Gabor filters
respectively.

B. Texton, Brightness and Color Maps Generation

Texton maps are created by passing the input image through
our filter bank followed by dimensionality reduction. This

Fig. 3. Gabor Filters

Fig. 4. Brightness, color and texton Maps for Image 1

results in the generation of a N dimension vector for each
pixel. Hence, the out is a (R,W,N) matrix. To convert this
N dim vector in a 1D vector, we perform K-Means cluster
to obtain discrete texxton ids for each pixel. Similarly, we
perform K-Means clustering on grayscale and RGB images
of the input image to generate brightness and color maps
respectively. Figures 4 to 13 show the brightness, color and
texton maps respectively for each input figure. The image
numbers might not correspond to the ones given in the set
due to how Python traverses over filenames in a folder.

Fig. 5. Brightness, color and texton Maps for Image 2



Fig. 6. Brightness, color and texton Maps for Image 3

Fig. 7. Brightness, color and texton Maps for Image 4

Fig. 8. Brightness, color and texton Maps for Image 5

Fig. 9. Brightness, color and texton Maps for Image 6

Fig. 10. Brightness, color and texton Maps for Image 7

Fig. 11. Brightness, color and texton Maps for Image 8

Fig. 12. Brightness, color and texton Maps for Image 9

Fig. 13. Brightness, color and texton Maps for Image 10

C. Gradient map generation

The generated texton, color and brightness maps are con-
voluted with half disk mask pairs. Half disk masks are binary
images generated by rotating a semicircle. I generated these
disks by first creating a semicircle. I traversed in the 2D space
of the kernel and calculated euclidean distance from the origin
for each pixel. This was followed by using the OpenCV rotate
function to obtain the half-disk mask bank.

The maps generated in Section I-B were convolved with the
half-disk masks generated in Figure 14 and the resultants were

Fig. 14. Half Disk Mask pairs in 8 orientations and 3 scales



Fig. 15. Tg , Bg , Cg for Image 1

Fig. 16. Tg , Bg , Cg for Image 2

Fig. 17. Tg , Bg , Cg for Image 3

Fig. 18. Tg , Bg , Cg for Image 4

Fig. 19. Tg , Bg , Cg for Image 6

Fig. 20. Tg , Bg , Cg for Image 7

Fig. 21. Tg , Bg , Cg for Image 8

Fig. 22. Tg , Bg , Cg for Image 9

used to perform test and compute the corresponding gradients
in texton, color and brightness domains which are denoted by
Tg , Cg , Bg respectively. The gradient maps are shown from
Figure 15 to 23

D. pb-lite Output

The gradients generated in previous subsection are used
along with sobel and canny baselines to obtain a probabilistic
boundary for each image. We aggregate the gradients across
the N dimension vector for each gradient image. The obtained
2D Tg , Cg , Bg maps are aggregated and used to obtain
Hadamard product with the sobel and canny results. The
resultant is called pb-lite output and is presented for each
image in Figures 24 to 33.

Fig. 23. Tg , Bg , Cg for Image 10

Fig. 24. Canny, Sobel, pb-lite Outputs for Image 1



Fig. 25. Canny, Sobel, pb-lite Outputs for Image 2 (rotated 90 degrees
clockwise)

Fig. 26. Canny, Sobel, pb-lite Outputs for Image 3

Fig. 27. Canny, Sobel, pb-lite Outputs for Image 4

Fig. 28. Canny, Sobel, pb-lite Outputs for Image 5

Fig. 29. Canny, Sobel, pb-lite Outputs for Image 6

Fig. 30. Canny, Sobel, pb-lite Outputs for Image 7

Fig. 31. Canny, Sobel, pb-lite Outputs for Image 8

E. Result

According to the results pb-lite outperforms canny edge
detection on most images. Furthermore, it works better in
reducing false positives when compared with sobel edge detec-
tion owing to it’s computation of color and texture gradients
along with the identification of intensity gradients which is
the princple upon which the two traditional algorithms work.
It must be noted that pb-lite does not much parameter tuning.
It is more dependent upon filter maps rather than scale of
the gaussian kernels. Although, the filter maps used here are
generated using gaussian kernels and their first and second
order derivatives, the need to tune the scale and kernel size is
dispensed because of the array of filters that are generated.
Hence, pb-lite is quite flexible to use as you can have a
different set filter maps to obtain a new result. Hence, I feel
pb-lite is better than canny and sobel.

Fig. 32. Canny, Sobel, pb-lite Outputs for Image 9

Fig. 33. Canny, Sobel, pb-lite Outputs for Image 10



Fig. 34. Base Model Architecture

Fig. 35. Base model accuracy on train and test sets

II. PHASE 2: DEEP DIVE ON DEEP LEARNING

In Phase 1 we implemented a traditional computer vision
algorithm that required generation of filter maps to compute
the edges in an image. However, contemporary approaches
involve deep learning where these filter maps are created
autonomously given the input and output datasets. Here we
train deep learning networks to classify objects in CIFAR-10
dataset.

A. Base Model

I used a small 2 layer CNN to create a threshold of the
results. The model architecture is present in Figure 34. It uses
SGD loss function with an LR of 0.001 and a batch size of
64 images. The model acheived an accuracy of 25.36% and
25.56% on the train and test sets respectively.

The train accuracy and loss are shown in Figures 35 and 36
respectively.

Fig. 36. Base model loss on train and test sets

TABLE I
CONFUSION MATRIX FOR BASE MODEL ON TRAIN SET

2321 120 27 41 6 315 213 74 1476 407
599 413 25 56 12 645 541 144 1735 830
1169 175 228 158 43 780 1529 218 358 342
708 116 129 371 19 1405 1252 251 356 393
536 80 143 185 54 832 2287 228 300 355
728 110 134 278 19 1668 1078 244 477 264
267 143 97 174 27 741 2802 301 134 314
489 232 122 274 33 746 1208 633 451 812
1097 83 15 27 1 586 75 27 2640 449
459 226 31 80 5 255 367 286 172 1549

TABLE II
CONFUSION MATRIX FOR BASE MODEL ON TEST SET

474 20 5 6 1 66 31 23 305 69
109 86 6 11 2 121 120 21 392 132
254 34 51 30 5 146 306 45 65 64
146 24 27 85 2 272 248 64 62 70
118 22 23 40 8 150 465 61 42 71
171 29 39 44 5 305 201 60 99 47
60 34 9 31 1 134 584 72 19 56
99 54 28 63 4 147 199 127 106 173
211 17 2 4 0 112 14 11 531 98
110 43 5 15 2 50 71 57 342 305

B. Base Model Update

To my initial model in Subsection II-A, I added batch
normalization after each CNN layer. The model architecture is
present in Figure 37. It uses SGD loss function with an LR of
0.001 and a batch size of 64 images. The inputs to the model
were also normalized to a range of [-1,1]. The model achieved
a maximum accuracy of 59.62% and 57.43% on the train and
test sets respectively.

The train accuracy and loss are shown in Figures 38 and 39
respectively.



Fig. 37. Updated Base Model Architecture

Fig. 38. Updated Base model accuracy on train and test sets

TABLE III
CONFUSION MATRIX FOR UPDATED MODEL ON TEST SET

545 39 82 40 16 18 37 15 154 54
42 647 11 18 6 8 32 14 89 133

104 22 337 94 83 153 109 51 29 18
39 19 69 395 56 192 76 76 43 35
38 15 68 90 404 62 108 159 32 24
20 11 73 201 44 499 30 92 15 15
24 19 53 94 40 31 691 6 17 25
10 9 39 65 59 102 12 635 13 56
67 53 8 27 2 7 21 9 740 66
41 102 13 33 14 7 19 45 77 649

C. ResNet Model

The actual resnet model is quite big and difficult to train so,
I used the residual network blocks from the ResNet paper in

Fig. 39. Updated Base model loss on train and test sets

TABLE IV
CONFUSION MATRIX FOR UPDATED MODEL ON TRAIN SET

2751 248 354 179 82 69 143 96 820 258
177 3257 60 93 76 24 158 87 427 641
535 92 1925 489 369 590 466 251 178 105
167 99 284 2124 211 1026 421 300 172 196
274 112 368 365 2170 246 458 701 128 178
82 42 340 1055 206 2489 188 435 64 99

121 124 257 434 220 128 3469 58 88 101
73 59 159 335 362 422 88 3212 39 251

380 245 67 147 48 34 97 32 3619 331
170 530 52 146 61 60 84 172 338 3387

my implementation. The model architecture I used is present
in Figure 40. The model was initially trained using Stochastic
Gradient Descent as the Loss function with an LR of 0.001
and a batch size of 64 images. Howevevr, the convergence of
the model parameters was quite slow. Hence, I had to replace
it with AdamW loss function while keeping the parameters
same. The inputs to the model were normalized here as well
to attain a better accuracy. The model achieved a final accuracy
of 75.32% and 60.68% on the train and test sets respectively.

TABLE V
CONFUSION MATRIX FOR RESNET ON TRAIN SET

3882 34 446 87 123 54 59 167 124 24
683 3239 64 101 140 47 107 161 122 336
296 5 2994 264 589 238 358 213 39 4
146 16 367 2082 566 1132 322 320 29 20
164 4 222 157 3564 166 205 495 10 13
44 10 238 664 458 3079 118 368 9 12
77 18 277 322 443 175 3588 78 15 7
67 4 112 117 597 299 25 3762 5 12

930 66 142 89 172 12 37 60 3437 55
552 335 54 124 169 58 50 436 85 3137



Fig. 40. ResNet Model Architecture

Fig. 41. ResNet accuracy on train and test sets

TABLE VI
CONFUSION MATRIX FOR RESNET ON TEST SET

724 10 115 14 34 8 14 35 40 6
164 582 16 30 32 11 23 35 22 85

59 2 539 46 136 77 81 51 7 2
38 3 75 391 123 224 67 69 4 6
24 3 62 28 641 35 80 119 4 4
17 5 58 155 94 565 29 68 5 4
14 6 77 65 107 39 675 12 3 2
20 2 23 22 124 66 15 723 1 4

200 21 26 20 36 4 12 16 647 18
116 88 10 28 42 14 12 85 24 581

Fig. 42. ResNet loss on train and test sets

Fig. 43. ResNext Model Architecture

D. ResNext Model

The model architecture is present in Figure 43. It uses
AdamW loss function with an LR of 0.001 and a batch size
of 64 images. The inputs to the model were also normalized
to a range of [-1,1]. The model achieved a maximum accuracy
of 92.19% and 79.69% on the train and test sets respectively.



Fig. 44. ResNext accuracy on train and test sets

Fig. 45. ResNext loss on train and test sets

TABLE VII
CONFUSION MATRIX FOR RESNEXT ON TEST SET

815 17 55 6 22 5 6 15 45 14
28 878 4 12 2 5 11 7 22 31
63 3 672 36 62 50 64 31 12 7
27 8 63 500 56 155 89 55 21 26
22 4 77 35 699 31 39 77 8 8
11 4 52 103 42 674 25 63 11 15
13 8 41 39 26 20 817 10 17 9
33 1 30 20 38 46 9 806 7 10

60 31 16 9 11 2 9 3 843 16
45 111 12 7 4 4 5 20 29 763

E. Inference
According to the graphs and Tables in Subsection from II-A

to II-D it is observed that ResNext model has the best accuracy.

TABLE VIII
CONFUSION MATRIX FOR RESNEXT ON TRAIN SET

4502 33 158 31 46 23 14 25 119 49
66 4676 19 25 18 13 21 10 58 94

205 19 4119 75 157 124 152 82 36 31
114 20 213 3375 154 550 250 188 68 68
107 11 200 97 4092 97 111 240 27 18
49 11 200 431 115 3816 97 214 27 40
43 20 111 102 53 86 4478 29 46 32
63 10 80 83 96 64 10 4560 7 27

160 74 44 19 23 10 14 16 4601 39
120 379 27 25 13 12 12 35 65 4312

Even though, the models were trained only for 10 epochs,
ResNext model was able to classify the CIFAR10 dataset with
better accuracy as compared to rest of the models.

Also, looking at Table IX, it is evident that ResNext and
ResNet models have very low parameter count owing to how
the two models the sizes of the feature maps thereby reducing
the number of paramters. However, they took more time to
process an input image as compared to the base models. But
the similar counter parts of the base models having similar
number of layers as ResNet and ResNext models used in my
implemetation, the Iterations/Sec trend would have favoured
ResNet and ResNext. Accoring to my results, I think ResNext
performs the best among the tested models because of it’s
better accuracy and low paramter count.

TABLE IX
TABLE SHOWING MODEL PARAMETER AND INFERENCE TIME

Parameter Count Iterations/Sec
Base Model 657080 689.62
Updated Base Model 657220 459.33
Resnet 110378 216.07
ResNext 126890 113.71

REFERENCES

[1] Filter Banks, https://en.wikipedia.org/wiki/Filter bank


