
Homework 0 - Alohomora
Zhentian Qian

Robotics Engineering
Worcester Polytechnic Institute

Worcester, Massachusetts
Email: zqian@wpi.edu

I. PHASE 1: SHAKE MY BOUNDARY

A. Filter Banks

1) Oriented DoG filters: The Gaussian kernel has the
following form:

g(x, y) = ηe−
1
2 ·((x

2+y2)/σ2) (1)

where η is a normalizing constant, σ2 is the variance.
To calculate the derivative of Gaussian kernel, we use the

Soble operator [1]:

Gx =

1 0 −1
2 0 −2
1 0 −1

 Gy =

 1 2 1
0 0 0
−1 −2 −1

 (2)

The derivative of the Gaussian kernel in x and y direction
are subsequently:

δg

δx
= Gx ∗ g(x, y), δg

δy
= Gy ∗ g(x, y) (3)

Where ∗ represents the convolution operation.
The oriented derivative of Gaussian is the directional deriva-

tive of the Gaussian kernel. Suppose the directional vector

s =

[
cos θ
sin θ

]
. The directional derivative ∆sg can be calculated

as:
∆sg = ∆g · s = cos θ

δg

δx
+ sin θ

δg

δy
(4)

The final calculated oriented DoG filters are visulaized in Fig.
1.

Fig. 1: Oriented DoG filter bank.

2) Leung-Malik Filters [2]: The Gaussian kernel with
different variance in x and y direction can be written as:

g(x, y) = ηe−
1
2 ·(x

2/σ2
x+y2/σ2

y)

The first and second order derivatives of Gaussian at orienta-
tion θ = 0 can be calculated analytically:

DoG(x, y) =
δg

δx
= −η · x · e(− 1

2x
2/σ2

x) · e(− 1
2y

2/σ2
y) (5)

D2oG(x, y) =
δ2g

δx2
= −η · (x2−σ2) ·e(− 1

2x
2/σ2

x) ·e(− 1
2y

2/σ2
y)

(6)

To calculate the first and second order derivatives of Gaus-
sian at other orientations, we simply need to rotate the x, y
coordinate by angle θ and substitute the rotated coordinates
into (5) and (6). The rotated coordinates are:[

xr

yr

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
(7)

The Laplacian of Gaussian (LOG) filter kernel can also be
calculated analytically:

LoG(x, y) =
δ2g

δx2
+
δ2g

δy2
= −η

(
1−x2 + y2

2σ2

)
e−

1
2 ·((x

2+y2)/σ2)

(8)
The final calculated LM filters are visulaized in Fig. 2.

Fig. 2: Leung-Malik filter bank.

3) Gabor Filters: In the discrete domain, two-dimensional
Gabor filters are given by [3]:

Gc[i, j] = Be−
(i2+j2)

2σ2 cos(2πf(i cos θ + j sin θ)) (9)

Gs[i, j] = Ce−
(i2+j2)

2σ2 sin(2πf(i cos θ + j sin θ)) (10)

where B and C are normalizing factors. The final calculated
Gabor filters are visualized in Fig. 3.

B. Texton Map

The input image is then filtered with each element of
the filter banks. The filter responses produced by Oriented
DoG, LMS, LML and Gabor filter banks of input image
1 are visualized in Figs. 4–7. The filter responses are then
concatenated into a N ×W ×H array, where N = 168 is the
total number of filters, and W and H are the dimensions of the
image. The filter responses at all pixels in the image are then
clustered into the K = 64 textons using kmeans algorithm.
The generated texton maps for all images are visualized in
Fig. 8.



Fig. 3: Gabor filter bank.

Fig. 4: Oriented DoG result of image 1.

Fig. 5: LMS filter responses of image 1.

Fig. 6: LML filter responses of image 1.

Fig. 7: Gabor filter responses of image 1.

Fig. 8: Texton map T for all images

C. Brightness Map

To generate the brightness map, we first transform the image
into the Lab [4] color space. The L channel for perceputal
lightness is considered as the brightness of the image. K-means
algorithm with K = 16 clusters are subsequently performed on
image brightness data. The generated brightness maps for all
images are visualized in Fig. 9.

Fig. 9: Brightness map B for all images

D. Color Map

K-means algorithm with k = 16 clusters are run on the
RGB channels of the image to produce to color map C. The
generated color maps for all images are visualized in Fig. 9.

Fig. 10: Color map C for all images

E. Texture, Brightness and Color Gradients

The implemented half disks are visualized in Fig. 11. The
half-disc masks are pairs of binary images of half-discs at
different orientation and scale.

The algorithm we use to calculate the map gradients are
described in Algorithm 1. Here we present the calculated
gradient for Texton, brightnesss and Color maps of image 1
at orientation θ = 0◦ and θ = 90◦, visualized in Figs. 12, 13,
14.

F. Pb-lite Output

The original images are visualized in Fig. 15. The canny
and sobel baselines are visualized in Figs. 16 and 17. The
ground truth is visualized in Figs. 18. The PB-lite outputs are
calculated based on the formula:

PBEdges =
Tg + Bg + Cg

3
⊙(0.5∗cannyPb+0.5∗sobelPb)

(11)



Fig. 11: Half disc masks at different scales and orientations.

Algorithm 1: Chi-square distance calculation proce-
dure

Data: img
Result: chi sqr dist
chi sqr dist = img∗0;
for i = 1:num bins do

tmp = 1 where img is in bin i and 0 elsewhere;
gi = convolve tmp with left mask;
hi = convolve tmp with right mask;
chi sqr dist += 1

2 · (gi−hi)
2

gi+hi

end

Fig. 12: Texton map gradient Tg of image 1 at θ = 0◦ and
θ = 90◦.

Fig. 13: Brightness map gradient Bg of image 1 at θ = 0◦ and
θ = 90◦.

Fig. 14: Color map gradient Cg of image 1 at θ = 0◦ and
θ = 90◦.

and are visualized in Fig. 19. Comparing the Pb-lite output
with the sobel and canny baselines, we can see that false
positive edges of the canny and soble baselines are suppressed
in the Pb-lite output while true edges still remain. It is due to
that fact that Pb-output is able to uses the global information
of the image and also combine multiscale cues [5].

Fig. 15: Input images from the BSDS500 dataset.

Fig. 16: Canny baseline.

Fig. 17: Soble baseline.

II. PHASE 2:DEEP DIVE ON DEEP LEARNING

A. Train your first neural network

The first neural network designed is a simple convolutional
neural network, as visualized in Fig. 20. There are 30166
parameters in this model. We use a stochastic gradient decent
optimizer for learning, with a learning rate lr = 0.001 and a
batch size of 32. The train and test accuracy over epochs are
visualized in Figs. 21 and 22. Loss over epochs is visualized
in Fig. 23. The confusion matrix of the trained model on



Fig. 18: Ground Truth.

Fig. 19: Pb-lite output for all images

training data is:


3852 62 99 119 71 65 30 85 356 261
53 4337 7 26 7 9 29 16 63 453
215 19 2897 478 425 326 286 224 57 73
63 19 102 3570 174 585 146 218 33 90
91 15 106 308 3714 138 131 395 45 57
22 15 88 812 139 3511 78 275 12 48
16 41 93 383 137 114 4105 35 12 64
23 5 40 179 118 124 11 4405 15 80
126 95 21 76 12 21 21 18 4383 227
49 99 7 32 7 19 17 38 43 4689


(12)

The confusion matrix of the trained model on testing data is:


658 23 36 36 19 13 14 22 108 71
28 758 3 15 7 7 10 6 23 143
71 8 429 118 118 94 69 51 14 28
20 9 32 519 66 191 47 72 9 35
32 6 48 89 583 43 63 108 14 14
11 2 37 247 44 529 26 83 7 14
8 10 31 114 42 40 729 13 4 9
18 5 15 62 49 68 5 739 5 34
61 39 5 31 6 9 5 4 781 59
25 72 3 18 4 13 7 12 23 823


(13)

B. Improving Accuracy of your neural network

Multiple approaches are implemented to improve the accu-
racy of the neural network:

1) Standardize the data input. The data is scaled from
[0,255] to [-1,1].

2) Decay the learning rate exponentially.
3) Increase the batch size 5 times every 10 epochs.
4) Data augmentation with random crop and flip.
5) Batch Normalization.

The test results suggest that method 1, 3, 5 are effective
in improving accuracy. The network architecture is still as
defined in Fig. 20 with 30166 parameters. The stochastic
gradient decent optimizer is used for learning, with a learning
rate lr = 0.001. The initial batch size is 32. The train and test
accuracy over epochs are visualized in Figs. 24 and 25. Loss
over epochs is visualized in Fig. 26. The confusion matrix of
the trained model on training data is:


4131 64 235 71 69 28 23 55 236 88
68 4521 20 20 8 12 30 16 83 222
244 16 3578 210 362 202 199 119 52 18
69 18 235 3229 249 726 239 146 52 37
86 10 237 190 3944 143 149 203 26 12
29 7 160 661 192 3619 94 212 11 15
21 20 169 239 128 107 4255 21 22 18
38 9 120 129 191 186 24 4271 11 21
217 80 46 37 26 15 25 11 4465 78
97 212 27 40 14 15 25 55 103 4412


(14)

The confusion matrix of the trained model on testing data is:


728 19 62 21 26 12 12 15 72 33
26 810 7 12 9 2 9 6 31 88
65 7 596 54 87 60 63 38 17 13
23 10 68 520 60 184 71 31 18 15
14 3 63 62 680 43 44 77 12 2
10 2 51 203 50 588 19 68 5 4
8 6 58 66 36 33 775 6 6 6
12 5 36 37 55 66 5 772 1 11
78 32 17 13 10 8 7 4 796 35
23 79 8 12 8 6 5 26 29 804


(15)

C. ResNet, ResNeXt, DenseNet

1) ResNet: The Resnet architecture is visualized in Fig. 27.
There are 98858 parameters in this model. We use a stochastic
gradient decent optimizer for learning, with a learning rate
lr = 0.001 and a batch size of 32. The train and test accuracy
over epochs are visualized in Figs. 28 and 29. Loss over epochs
is visualized in Fig. 30. The confusion matrix of the Resnet
on training data is:


4325 54 192 55 24 16 39 47 172 76
55 4732 10 12 3 2 9 1 34 142
228 10 3684 218 378 104 231 106 32 9
70 6 232 3290 157 858 230 88 40 29
56 2 268 186 3908 120 145 292 18 5
22 4 126 662 167 3773 47 183 8 8
35 13 199 281 127 63 4250 11 10 11
49 4 91 79 182 213 4 4357 5 16
144 44 19 31 13 4 11 6 4674 54
86 134 10 27 2 6 8 23 45 4659


(16)

The confusion matrix of the Resnet on testing data is:


771 18 59 16 10 5 10 14 67 30
23 888 3 2 1 3 4 1 15 60
70 1 639 58 77 49 66 27 8 5
25 5 67 573 40 199 54 16 9 12
15 2 70 58 683 36 53 73 7 3
9 5 25 173 53 675 15 38 3 4
14 2 47 66 44 19 798 4 5 1
14 0 34 26 68 56 3 783 1 15
61 19 0 9 4 2 5 5 874 21
23 48 5 10 3 3 4 9 13 882


(17)

2) ResNeXt: The ResneXt architecture is visualized in Fig.
31. There are 1212266 parameters in this model. We use
a stochastic gradient decent optimizer for learning, with a
learning rate lr = 0.001 and a batch size of 32. The train
and test accuracy over epochs are visualized in Figs. 32 and
33. Loss over epochs is visualized in Fig. 34. The confusion
matrix of the ResneXt on training data is:



5000 0 0 0 0 0 0 0 0 0
0 4999 0 0 0 0 0 0 1 0
3 0 4987 0 1 1 7 0 1 0
0 0 0 4992 0 4 1 0 1 2
1 0 0 2 4994 1 2 0 0 0
0 1 0 0 0 4994 2 1 0 2
0 0 0 0 1 0 4999 0 0 0
1 0 0 0 0 0 0 4999 0 0
2 0 0 0 0 0 0 04998 0
0 1 0 0 0 0 0 0 0 4999


(18)

The confusion matrix of the ResneXt on testing data is:


786 28 37 13 7 3 19 18 67 22
49 825 3 4 7 2 8 3 12 87
81 7 492 67 100 49 139 45 9 11
28 17 55 490 49 194 97 33 15 22
16 9 72 48 631 45 101 59 9 10
12 6 22 152 51 658 38 40 5 16
15 7 29 43 38 20 829 8 8 3
34 2 29 33 67 88 16 712 3 16
86 31 7 7 3 4 5 3 825 29
40 87 5 3 5 3 3 14 24 816


(19)

3) DenseNet: The DenseNet architecture is visualized in
Fig. 35. There are 10634 parameters in this model. We use
a stochastic gradient decent optimizer for learning, with a
learning rate lr = 0.001 and a batch size of 32. The train
and test accuracy over epochs are visualized in Figs. 36 and
37. Loss over epochs is visualized in Fig. 38. The confusion



Fig. 20: Convolutional neural network.

Fig. 21: Train accuracy over epochs.

Fig. 22: Test accuracy over epochs.

Fig. 23: Loss over epochs.

Fig. 24: Train accuracy over epochs of the improved network.

Fig. 25: Test accuracy over epochs of the improved network.

Fig. 26: Loss over epochs of the improved network.

matrix of the DenseNet on training data is:


3951 118 119 104 34 38 24 48 437 127
105 4503 1 30 5 9 9 5 92 241
481 13 2849 471 506 179 252 168 68 13
72 20 177 3220 264 813 201 117 64 52
135 8 219 253 3727 126 129 342 52 9
31 15 113 873 278 3411 42 215 9 13
74 29 194 571 323 55 3689 9 47 9
104 12 98 180 357 302 6 3896 11 34
206 60 19 40 12 10 6 13 4553 81
115 272 8 47 15 6 5 33 93 44069


(20)

The confusion matrix of the Resnet on testing data is:


750 34 25 24 9 7 5 11 108 27
20 869 0 4 2 0 3 2 28 72
113 2 505 98 114 51 64 27 18 8
24 7 45 582 58 179 45 30 21 9
21 1 59 60 710 25 31 74 18 1
11 6 30 193 62 639 8 42 4 5
19 3 49 117 76 8 720 2 4 2
28 3 28 31 76 92 2 725 2 13
57 19 2 15 3 5 2 2 878 17
35 61 1 11 5 4 2 10 26 845


(21)

D. Comparison

The comparison between different neural network architec-
tures are summarized in Tab. I. We can see that the original
and the improved convolutional neural network has the shortest
inference time. In terms of the training accuracy, the ResNext
achieved the highest because of its large number of parameters.
However, ResNext also shows severe over-fitting symptoms as
the high-accuracy in training data set is accompanied with
low-accuracy in the testing data set. Finally, in terms of
testing accuracy, ResNet has achieved best performance. The
feed-forward residual in the ResNet may have enabled more
efficient training with deeper neural network architecture.

TABLE I: Comparison between different neural network ar-
chitectures.

network parameter num train accuracy test accuracy inference time

Conv 30166 78.926% 65.48% 0.5ms
Improved 30166 80.85% 70.69% 0.49ms
ResNet 98858 83.304% 75.66% 0.85ms

ResNeXt 1212266 99.922% 70.64% 3.3ms
DenseNet 10634 76.41% 72.23% 0.85ms

REFERENCES

[1] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the
OpenCV library. ” O’Reilly Media, Inc.”, 2008.



Fig. 27: Resnet.

Fig. 28: Train accuracy over epochs of Resnet.

Fig. 29: Test accuracy over epochs of Resnet.

[2] T. Leung and J. Malik, “Representing and recognizing the visual appear-
ance of materials using three-dimensional textons,” International journal
of computer vision, vol. 43, no. 1, pp. 29–44, 2001.

[3] M. Haghighat, S. Zonouz, and M. Abdel-Mottaleb, “Identification using
encrypted biometrics,” in International Conference on Computer Analysis
of Images and Patterns. Springer, 2013, pp. 440–448.

[4] M. D. Fairchild and G. M. Johnson, “Image appearance modeling,”
Human Vision and Electronic Imaging VIII, vol. 5007, pp. 149–160, 2003.

[5] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and
hierarchical image segmentation,” IEEE transactions on pattern analysis
and machine intelligence, vol. 33, no. 5, pp. 898–916, 2010.

Fig. 30: Loss over epochs of Resnet.



Fig. 31: Resnext.

Fig. 32: Train accuracy over epochs of ResneXt.

Fig. 33: Test accuracy over epochs of ResneXt.

Fig. 34: Loss over epochs of ResneXt.



Fig. 35: DenseNet.

Fig. 36: Train accuracy over epochs of DenseNet.

Fig. 37: Test accuracy over epochs of DenseNet.

Fig. 38: Loss over epochs of DenseNet.


