
Homework0: Alohomora
P Sai Ramana Kiran

Email: spinnamaraju@wpi.edu
Using 1 late day

Abstract—This report documents the results for Phase I:
classical techniques for edge detection and Phase II: modern
techniques for object classification. Phase I part of the assignment
explores generation of variety of filter kernels using mathematical
equations and related techniques. These kernels are further used
to abstract the edges of an image. Phase II part of the assignment
explores using deep Convolution Neural Networks (CNNs) in
object classification problem. Different models are implemented
and a detailed analysis is presented

I. SHAKE MY BOUNDARY

This part of the assignment explores classical methods for
edge detection. It implements a “lite” version of probability
of boundary detection algorithm

A. Generating Filter Banks

One of the major challenge in Phase I part of the assignment
was to generate 2D skewed gaussians P (x, y) and their deriva-
tives P ′(x, y), P ′′(x, y) centered at 0 mean µ and varying
variance σ. This was achieved by assuming that distributions
of gaussian along each dimension is independent of each other
as denoted in 1

P (x, y) = P (x)P (y) (1)

P (t) =
1

σ
√
2π

e−
1
2 (

t−µ
σ )

2

(2)

Using this assumption, their nth partial derivatives can be
easily computed as shown in 3 and 4

Pn
x (x, y) = Pn

x (x)P (y) (3)
Pn
y (x, y) = P (x)Pn

y (y) (4)

Moreover, to get probability distribution of a gaussian ro-
tated by an angle of θ is achieved using rotation transformation
as denoted in 5

P (xr, yr) = P (xcosθ + ysinθ)P (ycosθ − xsinθ) (5)

Combining above equations will simplify the job of gener-
ating gaussians of different variances (σx and σy) at different
rotation (θ). A sample set of gaussians and it’s derivatives are
shown in 1

Now that a fundamental component of gaussians is created,
following filter banks which are combinations of orientations
and gaussian derivatives are generated.

1) Oriented Derivative Of Gaussians: As described in the
problem statement, these filters are generated by convolving
sobel kernels with gaussians of different sizes and rotating
them. Filterbanks with 2 scales and 12 orientations is shown
in figure 2

Fig. 1: 1st and 2nd derivative gaussians and rotated gaussians

Fig. 2: Oriented Derivative of Gaussian

2) Leung-Malik Filters: Using the concepts mentioned
above, generating Leung-Malik filters are straightforward.
Figure 3 shows 96 LM filters, combining LM Small and LM
Large filters

3) Gabor Filters: These filters which are approximated ver-
sions of how human visual system is generated with 4 scales
and 7 orientations. Idea was to cover as many orientations and
scales as possible while keeping computational feasibility in
mind. Figure 4 show different gabor filters used

B. Clustering Feature maps

Now, we use the N filters generated in the above filter
banks to convolve image of interest, which results in a series
of N convoluted images representing various texture patterns.
Along with these texture patterns, brightness and color images
are clustered to create a texton map, brightness cluster, color
cluster

1) Texton Map τ : Again, as mentioned in the problem
statement, Texton maps τ are generated by applying K -



Fig. 3: Leung Malik Filters

Fig. 4: Gabor Filters

means clustering on the filtered maps. 80 bins were used in
the clustering and right most image in figures 5a to 6e show
different texton maps

2) Brightness Map B: B is created with similar method-
ology as τ map, except 16 bins were used instead of 80 bins.
Left image in figures 5a to 6e represents results of various
images with 16 bins

3) Color Map C: Center images in figures 5a to 6e
represents results of various color maps. Clustering was done
using 3 channels as feature maps and 16 bins

C. Calculating Gradients

Gradients of different clustered feature maps was calculated
using half disk mask pairs and filtering operation on feature
matrices. Essentially, histograms of feature maps was calcu-
lated using half disk masks and a χ2 distance is computed
for each pair. So if we have N pairs of half disk masks, we
would end up with N feature maps containing χ2 distances
at each pixel We use half disk masks to calculate gradients
along these textured images

(a) image 1

(b) image 2

(c) image 3

(d) image 4

(e) image 5

Fig. 5: Clustered (left to right) Brightness,
Color and Texton maps of images 1 to 5

1) Half disk images: Half disk mask pairs with 3 scales
(10, 20, 30) and 7 orientations ranging from 0◦ to 145◦ are
shown in 7

2) Gradients Brightness (Bg), Color (Cg), Texture (τg):
Now, the 21 half disks masks generated is used to compute
gradient of the brightness, color and Texton map. Results of
which are shown in the figures 8a to 9e

D. Pb-Lite Output and analysis

Combining above derived gradient maps along with Canny
and Sobel baseline images gives the edges. as shown in
10. PbLite baseline clearly outperformed in many images
and identified the boundaries successfully. For example, a
comparison of pblite, sobel and canny can be seen in figure 11.
PbLite in this case has accurately identified the aircraft alone,
leaving the clouds unlike canny baseline. On the otherhand,
sobel couldnt identify some aspects of the aircraft. However,
there are few instances like figure 12 where pblite couldnt
identify complete aspects of the animal.

That being said, most of the edge detection from pblite
output is attributed to the canny and sobel baselines since
Hadamard product is nullifying the pixels using 0s of canny
and sobel baseline images. To make PbLite more standalone,
more finer number of Gabor filters have to be used. All
these filters have to be carefully selected since too many
convolutions might create a noisy feature maps.



(a) image 6

(b) image 7

(c) image 8

(d) image 9

(e) image 10

Fig. 6: Clustered (left to right) Brightness,
Color and Texton maps of images 6 to 10

Fig. 7: Half Disk Masks

(a) image 1

(b) image 2

(c) image 3

(d) image 4

(e) image 5

Fig. 8: Gradients of (left to right) Brightness,
Color and Texton maps of images 1 to 5

II. DEEP DIVE ON DEEP LEARNING

In this part of homework, modern techniques for image
classification using Deep Convolutional Networks have been
implemented.

A. Base Model and Implementation details

As a baseline model, an architecture inspired from VGG
is implemented. Wherein, the number of convolution filters
double (×2) as the network goes deep. Simultaneously, to
capture more finer features of the images, the size of activation
maps are halved (/2) using a Max pooling of size 2 × 2
in between the convolution filters. Each convolution filter is
also passed to Rectified Linear Unit (ReLU). At the end the
convolutions, a number of finer activation maps is flattened
and fully connected to a linear layer. This in-turn is mapped to
the classification layer. Architecture of the model is shown in
figure 16. All the hyper-parameters and training results can be
seen in figure 19. Comparison of training and testing accuracy
over epochs can be found in figure 17, loss can be found in
18

B. Improvements to Baseline Model

Few hyper parameters for improving the model prediction
accuracy have been explored. Modified architecture can be
seen in figure 15. Hyper-parameters and training results are
summarized in the figure 19. Clearly with the following



(a) image 6

(b) image 7

(c) image 8

(d) image 9

(e) image 10

Fig. 9: Gradients of (left to right) Brightness,
Color and Texton maps of images 6 to 10

Fig. 10: Probability Lite Edge detection output

Fig. 11: Comparing pbLite, Sobel and Canny
edges for image 1

Fig. 12: Comparing pbLite, Sobel and Canny
edges for image 8

Fig. 13: Baseline model architecture

improvements, accuracy of the network improved by almost
10%!

1) learning rate decay: 2 variations, linear decay and step
decay of the learning rate has been tried. However, both the
decay algorithms didnt improve the base line model accuracy
as shown in figure 17 with ‘Learn Decay Model Accuracy’
and ‘Learn Decay Model Validation Accuracy’ plots

2) Data Augmentation: Image data has been standardized
at the beginning of the training (and testing) to a specific mean
and variance. By standardizing the per pixel information, we
are essentially making sure that weights are not chasing a
moving target. Moreover, the images are resized to 64 × 64
from 32×32. Accordingly, the network parameters are changed



Fig. 14: Baseline confusion matrix

to reflect the new image sizes
3) Batch normalization: Along with data augmentation, a

batch normalization layer has been added in between convolu-
tions. This also makes sure that layers are getting standardized
inputs and weights dont move around too much from target.
Both of these techniques have significantly improved the
performance of the baseline model as can be seen in figure
17 with ‘Batch Norm Model Accuracy’ and ‘Batch Norm
Validation Accuracy’ plots

C. ResNet,ResNeXt,DenseNet

A custom implementations of the architectures ResNet and
ResNeXt are explored in this part of homework.

1) ResNet: In this variation of ResNet implementation,
images are first resized from 32 × 32 to 64 × 64, similar to
the previously improved baseline model. From here, the input
is directly fed to the ‘ResNetBlock’ instead of first feeding
to the convolution layer. This is because the first convolution
layer was primarily used for downsampling the image and in
this case images are small enough for them to act as input.
Figure 20 is a screenshot from tensorboard, which reflects
the ‘ResNetBlock’ implementation. Custom architecture is
outlined in figure 21

Other hyper parameters and results are outlined in the figure
19. Along with the confusion matrix for test and training
accuracy is given in figure 24. Training and testing accuracy
per epoch can be found in 22 Clearly, this network outperforms
the baseline model and it’s variation by a considerable margin,
despite being less number of training parameters. However,
this comes at a cost of inference run time, where baseline
model easily wins.

2) ResNeXt: This variation follows very similar design
pattern from above, wherenin the first layer is the ‘ResNeXt’

Fig. 15: Improved baseline model with batch normalization

block. This model uses the same input as above, where images
are of size 64 × 64. Summary of architecture is outlined in
figure 26. All the hyper parameters and results can be captured
from the figure 19. From this figure, it can be inferred that
despite the architecture having less number of the trainable
parameters, it couldnt achieve the training and testing accuracy
as good as custom ResNet implementation. This might be
attributed to the lack of sufficient number of cardinal layers
as indicated in the ResNeXt paper



Fig. 16: Improved Baseline confusion matrix

Fig. 17: Accuracy over different models

3) DenseNet: This variation connects every ‘DenseNet-
Block’ with downstream blocks. However, unlike previous net-
works, it is not adding to the input but instead concatenating to
the channel dimension. Thereby increasing the input channels
as the number of blocks within the network go deep. These
‘DenseNetBlock’s together form a ‘DenseNetLayer’ as shown
in figure 29. Architecture can be seen in the figure 30. There
were multiple attempts at improving the densenet layer by
modifying the image sizes, increasing the growth factor, also
increasing the depth of a particular DenseNetLayer. However,
not only the amount of time it took to train was massive, but
training and testing results were not optimal. For example,

Fig. 18: Loss comparison over different models

in the initial attempt, it was trained with 4 layers of depth
[6, 12, 24, 8], with epochs as 100. Even with these parameters,
network still gave a testing accuracy < 10%. In subsequent
runs, a modified and simplified layer have been tried with
weights initialized using ‘Kaiming Normal’ Model. Even with
this initialization, training couldnt be completed in time and
results were suboptimal.

4) Phase II concluding remarks: Overall, the ResNet and
improved baseline models worked really well. Still need to ex-
plore and tune many hyperparameters, optimizers and different
layers to identify best combination to predict images from
CIFAR-10. A better weight initialization for ResNeXt and
DenseNet based off ImageNet models is very much desired.
More methods to improve the inference time needs to explored
since 4ms for a good prediction is not sustainable in high speed
and latency sensitive environments



Fig. 19: Comparison of models

Fig. 20: ResNetBlock

Fig. 21: ResNet Architecture implementation

Fig. 22: Accuracy comparison of ResNet andResNeXt

Fig. 23: Loss comparison of ResNet,ResNeXt



Fig. 24: ResNet Confusion Matrix

Fig. 25: ResNeXtBlock

Fig. 26: ResNeXt Architecture implementation

Fig. 27: ResNeXt Confusion Matrix

Fig. 28: DenseNet Confusion Matrix



Fig. 29: DenseNet Block and Layer

Fig. 30: DenseNet Block and Layer


