
Homework 0 - Alohomora Report.
Venkatesh Mullur

Robotics Engineering Department,
Worcester Polytechnic Institute,

Worcester,MA, USA.
vmullur@wpi.edu

I. INTRODUCTION

In this project, we learned about edge and boundary de-
tection using classical Sobel and Canny filters, and more
modern PB(Probability of Boundary) approach. In this phase,
we learn about different aspects of the image which affect
the boundary detection alogrithms and how can they be tuned
to get better results. Apart from that, we also use machine
learning techniques to perform ”vector quantization” that helps
to reduce the data into relevant information and discards the
unnecessary data. In the second phase of this project, we learn
about the deep learning models from scratch and how the
different Deep Learning architectures affect the accuracy and
loss per epoch.

II. BACKGROUND

Having a boundary detection algorithm that focus solely on
the region of interest in the image is great, but classically
in image processing and computer vision, sobel, canny and
prewitt were the filters used to find the edge detection. In these
filters, they find the intensity discontinuations in the image
that can be said as a high pass filter. It basically passes the
pixel differences and supresses the low difference region. More
recent algorithm called PBLite that outperforms these classical
techniques using considering texture, brightness and colour
differences. We are using Berkeley Segmentation Data Set 500
for deep learning. To perform the PBlite algorithm, I will be
using Derivative of Gaussians(24), Leung-Malik Filters(84),
and Gabor Filters(32) with a total of 140 filters.

III. PHASE I

A. Derivative of Gaussian:

– To create a Derivative of Gaussian (DoG) filterbank,
I previously convolved a sobel filter with a
predefined Gaussian Filter but upon understanding
the correct way, I formed a gaussian kernel using
the gaussian kernel formula which looks as shown
in the figure below with its equation.

– By derivative of the image, we can 2D convolve the
base image by a sobel, canny or a prewitt operator.

– My gaussian function takes two standard deviations
to scale the filter, by this way we can create a lot of
difference of gaussian of different scales. I personally

have made 24 difference of gaussian filters. Which I
am showing below:

G(x, y) =
1

2πσxσy
exp−(

x2

2σ2
x

) exp−(
y2

2σ2
y

) (1)

Fig. 1. Gaussian Filter Visualization

Fig. 2. Derivative of Gaussian Filter Visualization

B. Leung-Malik Filters:

– In Leung-Malik filters, they have 4 parts, LML,
LMS, Laplacian of Gaussian and gaussians with
different scales. The scales for LMS are [1,sqrt(2),
2] and LML are [sqrt(2), 2*sqrt(2), 4].

– The LM filter bank consists of total of 48 filters of
LMS and 48 of LML. Out of the 48, the 36 are LM
filters and the rest are either Laplacian of Gaussian
or the Gaussians as shown above.

– To find the laplacian, I implemented the equation
shown below and got the result as shown after the
equation. By changing the scales as given above, we



can change the standard deviation of the Laplacians
as well as the gaussians.

L(x, y) = − 1

πσ4
[1− x2 + y2

2σ2
] exp−(

x2 + y2

2σ2
)

(2)

Fig. 3. Laplacian of Gaussian Filter Visualization

– The LML and LMS filterbank consists of first order
derivative of the gaussian and the second order
derivative. As discused above, the second order
derivative of the gaussian filter can be obtained by
convolving the sobel operator twice on the main
image which is the gaussian having different scales.

– By, changing scales, essentially changing the stan-
dard deviation, rotation and convolving once or twice
depending on the order of derivative we want, I
created a total of 84 filters which are shown below.

Fig. 4. Leung Malik Filters Visualization

C. Gabor Filter:

– Gabor Filters are present in the human eye and are
very important for feature extraction, they are created
by modulating a sin wave with variable frequency
and a gaussian filter with variable standard deviation.

– These filters are created to detect the effect of a
Gabor filter and the texture differences in the image.

– The shape of the gabor filter is dependant on 5 vari-
ables sigma, theta, lambda, psi and gamma. Sigma is
the standard deviation, theta is the angle of rotation,
lambda is the wavelength, psi is the offset, and
gamma is the measure of ellipticity. The gabor filters
of Lambda = 5, psi = 1.5, gamma = 0.75, sigma =
6, theta = pi/2 is shown below.

Fig. 5. Gabor Filters of Lambda = 5, psi = 1.5, gamma = 0.75, sigma = 6,
theta = pi/2 Visualization

D. Texton, Brightness, Color Maps:

– To find the Texton, Brightness and Color maps,
we convolve all the filters from the previous bank
with the image. We use grayscale of the image for
finding texton and brightness maps while a colored
image to find the color map.

– In my case, I had created 140 filters in the filter bank
and my image size is (321, 481). After convolving
the image with 140 filters, the result I got was of the
size (321,481,140) . To reduce the dimensionality
from 140 to 64, we use Kmeans Clustering having
64 clusters.

– Thus, each pixel in the filtered image had 140
features and after Kmeans clustering, it was reduced
to 64. That means each pixel in the image could have
140 values but then it was reduced to 64 using clus-
tering. To use this in the ”sklearn.cluster.KMeans”,
you need to have the data in a 2D format. To
perform this, I reshaped the data using numpy in
(321*481,140) form. Then this reshaped data is given
to the KMeans. The predicted output of the clustering
when our reshaped data is the input, is the texton
map. This texton map needs a reshape back to its
original form (321,481) to form the actual texton
map.

– The texton map in my project looks like the image
below.

Fig. 6. Texton Map Visualization



– The grayscale of the original image is directly given
to the clustering algorithm to get a brightness map.
In this map, it finds out the brightness discontinuities
and highlights them and is shown in the image below.

Fig. 7. Brightness Map Visualization

– To create the colormap, that points out the color
differences in the image, I did the same process I
did to create a brightness map, but since it is a color
map, I performed the same clustering on 3 primary
colors namely R,G and B.

– So essentially, I got 3 different colormaps. After
recombining them to form the colormap in RGB
format, it looks as the image shown below.

Fig. 8. Color Map Visualization

E. Half Disks:

– Half disks are just some filters having two contrast
sides of the same image that essentially compare
the distributions on both sides of the filters. They
are created in different scales and orientations are
shown below:

Fig. 9. Half Disks Visualization

– Texture gradients, brightness gradients and color
gradients are formed by convolving all the half
disks filters with their maps respectively.

– Ultimately since we have deliberately made the filter
bank of the half disk in such a way that they are in
the form of pairs. That means, every pair contains a
half disk and a flipped half disk.

– The texture gradient is shown in the fig 10 given
below.

Fig. 10. Texton Gradient Visualization

– This helps to find the distributions on the image when
convolved woth half disk filter bank.

– If there is a high discontinuity in the image, then the
gradient will be high but if the discontinuity is low,
then the gradient will also be low.

– The brightness gradient is shown below in the figure
11.

Fig. 11. Brightness Gradient Visualization

– Because of the half-disk filter bank, they span multi-
ple scales and orientations, it will result in a series of
local gradient measurements encoding how quickly
the texture or brightness distributions are changing
at different scales and angles.

– The color gradient is shown in the fig 12 below.

Fig. 12. Color Gradient Visualization



F. Chi Square Distance:

– It calculates the distance between 2 histograms. Here
the two histograms are the result of convolution of
every gradient map with the left half and the right
half of the half disk.

– The convolution is performed using cv2.filter2D()
function in OpenCV, and the image below shows
how I calculated the difference of histogram. Here
g is the left histogram and h is the right histogram.

Fig. 13. Snippet to calculate the Chi square distance.

X2(g, h) =
1

2
[
∑
i=1

(gi − hi)
2

(gi + hi)
] (3)

– The above snippet shows how I calculated the chi
squared distance and the formula is given above.

G. PBLite Final:

– PBCanny and PBsobel boundary detection was
already provided by the professor. w1 and w2 were
the weights given to them repectively. I tried with
w1, w2 = 0.5 and it gave pretty good results.

– Below equation shows the formula to be referred to
get the final PBlite output which clearly is better than
every individual output.

PBLite =
Tg +Bg + Cg

3
⊙ (w1 ∗ cannyPB + w2 ∗ sobelPB)

(4)

Fig. 14. PBLite Final Visualization.

– The main advantage of using this process was to
find the edges or boundaries in the region of interest
inside the image. With classical filters, we might get
the edges of the things which are out of focus in the
background

IV. PHASE II

In this phase, I try to implement a custom network made
by me, resnet, resnext and dense net. Due to the limited
computational capacity and since I am new to deep learning,
I might have missed some things.

A. Custom Network:

• I tried to implement a network similar to VGG16, but
due to small size of the images in the CIFAR dataset, I
had to limit the architecture.

Fig. 15. CustomNet Visualization.

• The parameters are:
• Number of parameters = 5,446,666
• Optimizer = SGD
• Learning Rate = 0.0001
• Batch Size =
• Epochs = 10
• Training Accuracy = 82.6
• Testing Accuracy = 36.8

Fig. 16. Model Summary.

Fig. 17. Model Summary.



Fig. 18. Model Summary.

Fig. 19. Model Summary.


