
RBE549 Computer Vision : Homework 0
Thabsheer Jafer Machingal
Robotics Engineering (M.S))

tmachingal@wpi.edu
Subbmitted on: September 1 2022

Abstract—Homework0: Alohomora, has two phases. Phase1:
Shake My Boundary is to develop a simplified version of
pb(probability of boundary), which finds boundaries by exam-
ining brightness, color and texture information across multiple
scales. The output of the algorithm is per pixel probability of
boundary and that can be visualized as edges. The algorithm
significantly outperformed the well regarded Canny and Sobel
edge detection algorithms. Second phase of this assignment is
tasked to build a simple ConvNet architecture and trained and
tested using CIFAR-10 image dataset.

Index Terms—Edge detection, CNN, Filter banks

I. INTRODUCTION

This homework is a prerequisite assignment for RBE :549,
computer vision, at Worcester Polytechnic Institute. The home
work has two phases. The first phase covers classical approach
to edge detection and second phase is a deep dive into
deep learning. For phase one, we are implementing the mode
explained in paper titled ”Contour Detection and Hierarchical
Image Segmentation”[1]. Phase 2 is implementation of a CNN
architecture, train the model and test it. For the later part
of the assignment the accuracy of the model is improved by
normalizing the dataset. Convoluational neural networks(cnn)
IS the best way for computer to look at an image and learn
features of the image without explicitly directing it do so [2].

II. PHASE 1: SHAKE MY BOUNDARY

A. Designing Filter banks

Filter bank is an arrangement of band-pass filters that split
the input signal into a set of analysis signals [3]. Filter banks
are used for signal processing and image processing. For this
assignment we are required to build three different filter banks
and integrate them to filter through an image. in total

1) Oriented DoG filters: A collection of Oriented DoG
filters can be created by convolving a simple Sobel filter and a
Gaussian kernel and then rotating the result multiple times. In
total 32 DoG filters were created. I used two different scale,
the standard deviations of the 2D Gaussian kernels are 1 and
2 and 16 different orientation between 0° and 360°.

2) Leung-Malik filters: Leung-Malik filters (LM filters) are
a collection of multi-scale, multi-orientation filter bank with
48 filters. For this assignment, we are considering LM Small
(LMS) and LM Large (LML) filter bank, they differ in the
scale of standard deviations. I specifically chose, 48 filters
of kernel size 57x57 for LML and LMS. Out of 48 filters,
36 made from derivative of Gaussian kernels, namely first and
second derivatives of Gaussian kernel for three different sigma

Fig. 1. oriented DoG filters

values and six orientations. For LMS, the values are; σ = 1,√
2, 2 and for LML, σ =

√
2, 2, 2

√
2. 12 other filters include

eight LOG (Laplacian of Gaussian) filters and four Gaussian
filters. For the 8 LOG filters, the filtering occur at σ and 3σ.
Where the scales for LMS are σ = 1,

√
2, 2, 2

√
2 and for

LML, σ =
√
2, 2, 2

√
2,4.

Fig. 2. Leung-Malik Small filters

Fig. 3. Leung-Malik Large filters



3) Gabor filters: A 2D gabor filter is gaussian kernel
function modulated by a sinusoidal plane wave.

g(x, y) = s(x, y)wr(x, y) (1)

Here the s(x, y) is a complex sinusoid, known as the carrier
and wr(x, y) is a 2-D Gaussian-shaped function known as the
envelope[4]. The complex sinusoidal function is defined as:

g(x, y;λ, θ, ψ, σ, γ) = exp (
−x′2 + γ2y′2

2σ2
) exp (i(2π

x′

λ
+ ψ))

(2)
where x′ = x cos(θ)+y sin(θ) and y′ = −x sin(θ)+y cos(θ).
For the purpose of this assignment, the real part of the
equation (2) is sufficient and is used to design a Gabor filter.
The standard deviation in 2D is split between x and y as
σy = σx

γ .The constant parameters in equation (2) are wave
length of the sinusoidal factor(λ), orientation of the normal to
the parallel stripes of a Gabor function (θ), phase offset (ψ),
standard deviation of the Gaussian envelope(σ) and the spatial
aspect ratio(γ). γ describes the ellipticity of the support of the
Gabor function[5].

Fig. 4. Gabor filters

4) Texton Map,T: Filtering an input image with each ele-
ment of your filter bank results in a vector of filter responses
centered on each pixel. A distribution of these N-dimensional
filter responses could be thought of as encoding texture
properties. And this representation is simplified by replacing
the N-dimensional vector with a texton ID, this achieved by
clustering the filter responses at all pixels in the image in to
K textons using kmeans from Scikit learn[6]

5) Brightness, B: Its a map of changes in brightness with
in an image.

6) Color Map, C: Color Map captures the changes in color
or chrominance of an image.

B. Texture, Brightness and Color Gradients Tg ,Bg ,Cg

To obtain Tg ,Bg ,Cg , we need to compute differences of
values across different shapes and sizes. This can be achieved
very efficiently by the use of Half-disc masks.

Fig. 5. half disc masks

C. Sobel and Canny baselines

Sobel and Canny baselines are given as the output images
from the sobel and canny operations. Out Pb-lite algorithm is
compared against these baselines.

D. Pb-lite Output

The pb-lite algorithm evidently performed well in detecting
edges. In a semantic pov, Pb-lite is capable of detecting edges
that are useful and good at omitting not so useful edges.

E. Results

1) Sample image: The results of pb-lite is tested on a
sample image. Along with the pb-lite results of every step is
given below

Fig. 6. image 1



Fig. 7. Texton map and texton gradient

Fig. 8. brightness map and brightness gradient

Fig. 9. color map and color gradient

Fig. 10. sobel(Left) and canny(Right) baseline

Fig. 11. Pb-lite output

III. PHASE2: DEEP DIVE ON DEEP LEARNING

A. Problem Statement

For this problem, A simple convoluational neural net-
work(convnet) is built with pytorch, trained the model and
tested using images from CIFAR-10 dataest. For the later
parts of this problem, I’m implememnting Three other neural
network models namely, DenseNet, ResNet, ResNeXt. The
code is implemented on google colab notebook and the model
is trained on GPU.

B. Dataset

CIFAR-10 dataset is a collection of 60000 32x32 images
of 10 different classes with 6000 images per class. In which
50000 is training images and test images are 10000. The
dataset is fairly balanced and spread across between the
classes.



C. Model the first neural network
For this part of the assignment I built a simple cnn architec-

ture. It has six convolutional and three linear layers. A model
summer of the architecture is printed out and given below.

Fig. 12. Model Summary of the CIFAR10Model

D. Train your first Neural Network
Some of the functions given in the starter code was edited to

better understand the code and adapt to the dataset. Also, my
local machine was not performance-wise competitive so the
model is trained on GPU on google colab notebook using cuda
toolkit from NVIDIA. The data is trained in batches of 100 and
for 14 epochs. The training training time is around 205 seconds
on GPU. It is evident from the above plot that accuracy of

Fig. 13. Number of parameters and weights of the network

the training dataset increase over number of epochs and further
improvement after certain number of epochs.

E. Test your first Neural Network
The trained model is tested with 10000 images from the

CIFAR10 dataset. Our model has classification accuracy of
76.79% test dataset. A confusion matrix of the test dataset is
given below.

F. Improving Accuracy of your Neural Network
1) Normalizing the dataset: The dataset is normalized to

improve the accuracy. By normalizing the dataset I was able
to improve accuracy of training and test set by a few points.
The reported test accuracy for the normalized dataset is 77.61
%. The improved model’s confusion matrix is given below.

Fig. 14. Training accuracy vs Number of epochs

Fig. 15. Training and validation loss vs Number of epochs

Fig. 16. Confusion matrix of the test dataset



Fig. 17. Training accuracy vs Number of epochs

Fig. 18. Loss vs Number of epochs

Fig. 19. Confusion matrix of the normalized dataset

G. Phase2: Results

1) Number of epochs: six and above is a good number of
epochs, by optimising number of epochs we might be able
to reduce training time and computation complexity. For this
given problem, 14 epoch took around 205 seconds and 15
epochs was 233 seconds. But for more complex problem,
optimizing number of epochs might save a lot of time.

2) Normalization: Normalizing the dataset improved the
accuracy by a small scale.

REFERENCES

[1] P Arbeláez et al., “Contour Detection and Hierarchical Image Segmen-
tation,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 33, no. 5 (May 2011): 898–916, accessed September 1, 2022,
http://ieeexplore.ieee.org/document/5557884/.

[2] “What Is a Convolutional Neural Network?,” Western Governors Uni-
versity, accessed September 1, 2022, https://www.wgu.edu/blog/what-
convolutional-neural-network2008.html.

[3] “Filter Bank: What Is It? (DCT, Polyphase, Gabor, Mel And FBMC),”
Blog, April 19, 2021, https://www.electrical4u.com/filter-bank/.

[4] Javier Movellan, “Tutorial on Gabor Filters,” n.d., 4,
https://inc.ucsd.edu/mplab/75/media//gabor.pdf.

[5] “Filter Bank: What Is It? (DCT, Polyphase, Gabor, Mel And FBMC),”
Blog, April 19, 2021, https://www.electrical4u.com/filter-bank/.

[6] “Scikit-Learn: Machine Learning in Python — Scikit-Learn 1.1.2 Docu-
mentation,” accessed September 1, 2022, https://scikit-learn.org/stable/.


