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Abstract—This homework is divided into 2 phases. Phase 1
explores the Probability of Boundary(Pb) boundary detection
algorithm and its comparison with the well known and standard
Canny and Sobel edge detection techniques. The Pb algorithm
examines the brightness and texture information along with the
intensity information which gives it an advantage over the Canny
and Sobel techniques. Phase 2 involves designing and training our
own neural network architecture using PyTorch. The CIFAR-10
dataset containing a total of 60,000 images is used for training
and testing the model.

I. PHASE-I: SHAKE MY BOUNDARY

The standard edge detection algorithms like Canny and
Sobel utilise the intensity discontinuities of an image to
determine an edge which is the classical method. On the other
hand, the Pb technique uses texture, brightness and intensity
data thereby improving the performance significantly. We will
perform a few initial steps required to implement the Pb
detection algorithm. Firstly, we start by creating 4 filter banks.

• Oriented Difference of Gaussian (DoG)
• Leung-Malik Filters
• Gabor Filters
• Half Disc Masks

A. Generating Filter Bank

The DoG filter is the difference of two Gaussian filters
that can be applied to an image. This filter is generated by
convolving the Sobel operator with the 2D Gaussian kernel.
The result is then rotated to get the oriented versions of the
filter collectively forming the filter bank. The generated 2*16
DoG filter bank is shown in the Figure 1. I have taken sigma
values as [1,3] and 16 orientations of 22.5 degrees each.

Fig. 1: DoG Filter Bank.

The generated LM filter bank is shown in the figure 2. It
consists of 48 filters that are first and second order derivatives
of Gaussians at various orientations and scales. The Gabor
filter bank is generated when a Gaussian function is modulated

by a sinusoidal plane wave. Shown in figure 3 is the generated
Gabor filter bank. I used 3 different combinations of theta
and omega to generate these filters. First 2 rows are for
[theta,omega] = [1,0.4]. Next 2 rows are for [0.5, 0.3] and
the last 2 rows are for [0.25,0.2].

Fig. 2: LM Filter Bank.

Fig. 3: Gabor Filter Bank.



Lastly, the Half Disk Mask filters are generated. We will be
using these later on while calculating the Chi square distance.
The following figure displays a total of 80 masks with 16
orientations and radii of [5, 10, 15].

Fig. 4: Half Disk Masks.

B. Generating Texton, brightness, Color Maps

For the Texton map, I combined all the 3 filter banks (DoG,
LM and Gabor) to produce a large combined filter bank.
Convoluting these filters on the input image and performing
K-Means clustering with K=64 and plotting the results gives
us the following output in figure 5.

C. Generating Gradients for Texton, brightness, Color Maps

To calculate the gradients of the maps, we convolve the left
and right half disk masks over the input image. These values of
Tg , B and Cg indicate how the values of Texture, brightness
and color are changing at a pixel respectively. The gradient
turns out to be small if the distributions are similar and large
if the distributions are dissimilar. The gradients plotted as an
image are shown in the figure 6.

D. Generating the final PbLite output

To produce the PbLite output, we first need the filtered
outputs from the standard Canny and Sobel baseline filters.
In the final step, we combine the information using a simple
equation as follows.

PbEdges =
(Tg +Bg + Cg)

3
(w1 ∗ cannyPb+w2 ∗sobelPb)

(1)
The values of w1 and w2 can be varied accordingly. In my

case, both values are 0.5. The output of the PbLite boundary
detection filter along with the Canny and Sovel filter outputs
is shown in figure 7 for all the 10 test images to give a better
understanding of the filters and their comparison.

Fig. 5: T , B, C of Images 1 to 10 (Bottom to Top).



Fig. 6: Tg , Bg , Cg of Images 1 to 10. Fig. 7: Canny, Sobel and PbLite filters resp of Images 1 to 10.



E. Evaluating the results

For the images 10 and 9, we can see that PbLite image
looks significantly better than the other 2 as all the required
edges have been detected which is not the case with the Sobel
filter. The PbLite also ignores the background edges slightly
better than the Canny. For images 8 to 5 and 1, I feel the
Sobel output images are better than the Canny and PbLite as
it filters the background edges in a better way leaving just the
subject in focus, although the edges do not appear to be as
prominent. For images 4, 3 and 2, I feel PbLite does a better
job.

Overall, we can see a regular pattern among the filters.
The Canny tends to highlight all the edges very prominently
and often preserves more information than needed. The Sobel
appears to less highlight the edges in almost all the images.
The PbLite gives the user control over how much texture,
brightness or color information to be used to perform edge
detection.

II. PHASE-II: DEEP DIVE ON DEEP LEARNING
In this section, the task is to design and implement a

custom CNN architecture using PyTorch to perform image
classification. We will be using the popular CIFAR-10 dataset
which contains a total of 60,000 images divided into 10
classes. In our case, we will be using 50,000 images as the
training dataset and the remaining 10,000 images for testing.

A. First CNN Architecture

The first architecture I implemented is shown in the figure 8.

Fig. 8: First basic architecture.

This architecture consists of 3 convolution layers each
followed by a ReLU and Max pooling layer of kernel size
= 2 and stride = 2. Then there are 2 fully connected layers of
outputs 128 and 10. The total number of parameters in this
model is 160202.

1) Training: The parameters for training are constant and
as follows for all the networks.

• Epochs: 50
• Batch size: 16
• Learning Rate: 0.0001
• Loss Function: Cross Entropy

I tried 2 optimizers namely Stochastic gradient descent
(SGD) and ADAM for this model. Figure 9 shows the training
loss and accuracy plotted over Epochs for the SGD optimizer
and figure 10 shows the same when the Adam optimizer is
used. The accuracy and loss comes out to be 61.34% and 1.21
respectively for the SGD optimizer. Whereas it is 93.76% and
0.31 respectively for the ADAM optimizer.

Fig. 9: Training Loss and Accuracy using SGD

Fig. 10: Training Loss and Accuracy using ADAM

2) Testing: The testing accuracy and confusion matrix for
the model for the SGD optimizer is shown in figures 11 and
12 respectively. Whereas the testing accuracy and confusion
matrix for the ADAM optimizer is plotted in figures 13 and
14 respectively. The testing accuracy is 62.32% for the SGD
and 69.57% for the ADAM.



Fig. 11: Testing Accuracy with SGD optimizer

Fig. 12: Confusion matrix for SGD optimizer

Fig. 13: Testing Accuracy with ADAM optimizer

Fig. 14: Confusion matrix for ADAM optimizer

B. New CNN Architecture

In this new architecture, I added a convolution layer making
a total of 4, in a pair of 2 consecutively. I also added a batch
normalization layer after each pair of convolution layers. At
the end, another fully connected layer is added to the model
architecture. The total number of parameters in this model is
509802. The diagram of this CNN model is shown in figure 15.

Fig. 15: New improved Architecture

1) Training: The parameters used in the earlier model are
kept as it is while training this model. As done previously,
I have experimented for 2 different optimizers here as well
i.e. SGD and ADAM. The training loss and accuracy plotted
over Epochs for the SGD optimizer is shown in figure 16
and figure 17 shows the same when the Adam optimizer is
used. The accuracy and loss comes out to be 92.54% and 0.44
respectively for the SGD optimizer. Whereas it is 95.26% and
0.32 respectively for the ADAM optimizer.



Fig. 16: Training Loss and Accuracy using SGD

Fig. 17: Training Loss and Accuracy using ADAM

2) Testing: The testing accuracy and confusion matrix for
the model for the SGD optimizer is shown in figures 18 and
19 respectively. Whereas the testing accuracy and confusion
matrix for the ADAM optimizer is plotted in figures 20 and
21 respectively. The testing accuracy is 43.21% for the SGD
and 36.57% for the ADAM.

Fig. 18: Testing Accuracy with SGD optimizer

Fig. 19: Confusion matrix for SGD optimizer

Fig. 20: Testing Accuracy with ADAM optimizer

Fig. 21: Confusion matrix for ADAM optimizer



C. Evaluating the results

We can infer from the loss and accuracy plots of Training,
that the first CNN architecture has relatively less training
accuracy as compared to the New CNN architecture when
using the SGD optimizer and almost same when using the
ADAM optimizer. The same can be said w.r.t the training loss.
the new architecture performs better as the loss falls down to
a lower value whereas the value is comparatively high for the
first architecture using the SGD optimizer.

For the Testing part, the first architecture has a increasing
curve for the testing accuracy although the accuracy is not the
best. Whereas the new architecture performs extremely poorly
in the testing part with a flat accuracy curve that only increases
for the initial 5̃ epochs.

This indicates that the New architecture model has been
Overfit largely and is of little use. Overall, the First architec-
ture with the ADAM optimizer seems to perform the best out
of all the architecture and optimizer combinations.


