
Homework 0: Alohamora
RBE 549

(Using 2 late days)
Karter Krueger

Robotics Engineering Department
Worcester Polytechnic Institute

Worcester, MA 01609
Email: kkrueger2@wpi.edu

I. PHASE 1

Phase 1 of the homework is focused on the implementation
of a simplified version of the PB (probability of boundary)
edge detector outlined in [1]. Detecting edges and boundaries
of objects is a very common problem in computer vision, as
you often must look for objects and features in the image
to be used for applications such as counting or tracking.
Our boundary detector goes through several steps to extract
features from the image to be combined for a final edge
detection output.

A. Step 1: Filter Banks

The first step of detecting the boundaries requires the
extraction of low-level features and textures using a bank of
filters. Features are found by performing a 2D convolution
across the image with the filter as the kernel. Three filter
generation methods are used with a variety of parameters to
maximize the variety of discovered features.

1) Oriented DoG (Derivative of Gaussian) Filters: Deriva-
tive of Gaussian filters are generated by convolving a Sobel
kernel operator across a Gaussian distribution matrix. First, a
Gaussian matrix G is generated by filling each (x, y) cell by
the formula

G(x, y) =
1

π ∗ σ2
∗ e

−x2+y2

2∗σ2

The Sobel kernel is defined by: [[1, 0, -1], [2, 0, -2], [1, 0, -1]].
After convolving the Sobel kernel across a Gaussian matrix of
the target size, the resulting filter can be rotated to a target
angle to achieve a variety of oriented DoG filters. Filters from
16 orientations [0, 2 ∗ π) and 2 scales are shown in 1 below.

Fig. 1. Oriented DoG Filters with 16 orientations and 2 scales.

2) Leung-Malik Filters: Leung-Malik (LM) filters are made
up of both angled and circular Gaussian filters. The standard
48 filters include 1st and 2nd order Gaussian derivatives at 6
angles and 3 scales, 8 Laplacian of Gaussian (LoG), and 4
circular Gaussian filters, shown in Fig. 2 below. LoG filters
are generated by convolving the Laplacian kernel [2] across a
Gaussian matrix, with the Laplacian kernel defined as: [[0, -1,
0], [-1, 4, -1], [0, -1, 0]]. Filters are then rotated to a target
rotation angle.

Fig. 2. Leung-Malik Filter Bank.

3) Gabor Filters: Gabor filters are generated to be similar
to how humans see as they look for specific image frequencies,
explained further in [3]. As defined by [3], the Gabor extracts
image features using:

Gcos[i, j] = Be−
i2+j2

2σ2 cos(2πf(icosθ + jsinθ))

Gabor filters at 8 orientations (θ) [0, 2π) and 5 scales are
shown in 3 below. The scales were altered by increasing the
value of σ while decreasing the number of standard deviations.
Parameters γ, λ, and ψ were held constant.

B. Step 2: Textons, Brightness, and Color Maps

After generating filter banks, they must be applied to the
images to be useful for detecting features and boundaries. The
filters are used to create three types of maps, based on Textons,
Brightness, and Color as explained below.

1) Texton Map: Texton maps are created by convolving N
filters across the target image to generate an N ”channels” for
the resulting array. Each pixel can then be viewed as a vector
with N values. Next, KMeans clustering is performed on the



Fig. 3. Gabor Filter Bank.

pixel vectors to cluster into K = 64 Texton ID values. An
example of a Texton ID map after clustering is shown in Fig.
4.

Fig. 4. KMeans Clustering of a Filtered Image1 to produce a Texton Map.

2) Brightness Map: Brightness maps are created by
KMeans clustering on the greyscale (brightness) image to
cluster pixel brightness values into K = 16 levels of intensity.
An example of the brightness clustered image is shown in Fig.
5.

3) Color Map: Color maps are created by KMeans clus-
tering on the color (RGB) image to cluster pixel colors into
K = 16 levels of intensity. An example of the brightness
clustered image is shown in Fig. 6.

C. Step 3: Map Gradients

Next, gradients are computed from the maps by the differ-
ences in values of different sizes and shapes. First, Half-disc
masks are generated, to be used for the difference algorithm,
by creating a white half-circle on a black background at a
target angle. Opposite angle pairs are generated to get left
and right opposite masks for finding difference in images.
Examples of the half-disk masks are shown below in Fig. 7

Fig. 5. KMeans Clustering of Brightness (greyscale) Image1.

Fig. 6. KMeans Clustering of RGB Color Image1.

at 8 orientations and 3 scales. Now, Texton, Brightness, and
Color gradients are computed at the pixel-level using the above
half-disk masks as part of the following equation, where gi is
the result of the image convolved with the left disk mask and
hi from the right matching mask.

χ2(g, h) =
1

2

K∑
i=1

(gi − hi)
2

gi + hi

This generates a 3D matrix with shape m×n×N from (m,n)
image and N filters.

D. Step 4: Sobel and Canny Edge Detection

Sobel and Canny are both well-known edge detectors that
are often used as a baseline. They are still important as an
input to this PB-lite boundary detector. Examples of the Sobel
and Canny edges are shown in Fig. 8.

E. Step 5: Pb-Lite Final Output

The fine step of the Pb-lite boundary detector combines the
map gradients with the Sobel and Canny outputs using the



Fig. 7. Half-disk Mask Pairs.

Fig. 8. Sobel and Canny from Image 1

following equation:

PbEdges =
Tg +Bg + Cg

3
⊙(w1 ∗cannyPb+w2 ∗sobelPb)

Boundaries appear brighter and more solid if they are stronger
with a higher magnitude output of the equation. Values of
w1 = .02 and w2 = .02 are used in the following example
output images.

Overall this Pb-Lite boundary detector performs fairly well
at detecting the object boundaries and scene edges. It is seen
that background edges are shown more clearly than the Canny
and Sobel baselines.

Fig. 9. Image 1 Texton, Brightness, Color

II. PHASE 2: DEEP LEARNING CIFAR10

Phase 2 of the homework implemented four different neural
networks that were trained on the CIFAR-10 classification
dataset of 50,000 images across 10 classes. All networks are
implemented and trained in PyTorch. Metrics are reported and

Fig. 10. Image 2 Texton, Brightness, Color

Fig. 11. Image 3 Texton, Brightness, Color

Fig. 12. Image 4 Texton, Brightness, Color

Fig. 13. Image 5 Texton, Brightness, Color

Fig. 14. Image 6 Texton, Brightness, Color

Fig. 15. Image 7 Texton, Brightness, Color

Fig. 16. Image 8 Texton, Brightness, Color

compared across networks with confusion matrices along with
plots of training loss and accuracy. Data was standardized
across all network training from the [0, 255] range down to
[0, 1]. A network architecture comparison is shown in 39 of
Simple network and Resnet.



Fig. 17. Image 9 Texton, Brightness, Color

Fig. 18. Image 10 Texton, Brightness, Color

Fig. 19. Image 1 Texton, Brightness, and Color Gradients

Fig. 20. Image 2 Texton, Brightness, and Color Gradients

Fig. 21. Image 3 Texton, Brightness, and Color Gradients

Fig. 22. Image 4 Texton, Brightness, and Color Gradients

Fig. 23. Image 5 Texton, Brightness, and Color Gradients

Fig. 24. Image 6 Texton, Brightness, and Color Gradients

Fig. 25. Image 7 Texton, Brightness, and Color Gradients

Fig. 26. Image 8 Texton, Brightness, and Color Gradients

Fig. 27. Image 9 Texton, Brightness, and Color Gradients

Fig. 28. Image 10 Texton, Brightness, and Color Gradients

Fig. 29. Image 1 Sobel Baseline, Canny Baseline, (Ours) Pb-Lite Output

Fig. 30. Image 2 Sobel Baseline, Canny Baseline, (Ours) Pb-Lite Output



Fig. 31. Image 3 Sobel Baseline, Canny Baseline, (Ours) Pb-Lite Output

Fig. 32. Image 4 Sobel Baseline, Canny Baseline, (Ours) Pb-Lite Output

Fig. 33. Image 5 Sobel Baseline, Canny Baseline, (Ours) Pb-Lite Output

Fig. 34. Image 6 Sobel Baseline, Canny Baseline, (Ours) Pb-Lite Output

Fig. 35. Image 7 Sobel Baseline, Canny Baseline, (Ours) Pb-Lite Output

Fig. 36. Image 8 Sobel Baseline, Canny Baseline, (Ours) Pb-Lite Output

Fig. 37. Image 9 Sobel Baseline, Canny Baseline, (Ours) Pb-Lite Output

A. Network 1: Initial Custom Network

The first network is a quick and simple custom network
composed of 4 convolutional layers and 2 fully-connected (FC)
final layers. Each convolutional layer is followed by a ReLU
non-linear activation function. The filter sizes of the 4 layers

Fig. 38. Image 10 Sobel Baseline, Canny Baseline, (Ours) Pb-Lite Output

Fig. 39. Simple Network vs Resnet Architecture

are [16, 32, 64, 128], all with kernel sizes of 3x3. The last 2
layers use a stride of size 2 to start shrinking the feature space.
Lastly the space is flattened into a 2048 vector before an FC
layer of 256 and then 10 for the 10 output classes. The network
is trained with a batch size of 128 from 64 images with 1
random flip applied to each to get 128 total batch size. The
simple, common SGD (Stochastic Gradient Descent) optimizer
is used with a learning rate of 0.01 and momentum of 0.9.
This learning rate was found to work best after trying 0.1 and
0.001 options. The simple custom architecture is shown in Fig.
40 with 624,554 parameters. Training accuracy reached 51.9%
and test accuracy was 46.8%. Training accuracy and loss plots
are shown in Fig. 42. The second, improved version of this net-
work added dropout layers between all convolutional layers to
randomly drop connections 20% of the time to prevent worse
overfitting. Adding the dropout during training did improve
the performance, as expected. Additional convolutional layers



were also added with higher numbers of channels between the
first and second versions as well.

Fig. 40. Simple Network Architecture

Fig. 41. Simple Network Confusion Matrix for Train and Test

Fig. 42. Simple network training accuracy and loss over epochs

B. Network 2: ResNet

ResNet is a very well known network from the ImageNet
dataset challenge. ResNet improves on original convolutional
networks by adding residual connections that connect earlier
feature maps to be added after further convolutional layers
are performed. This helps with several issues including the
vanishing-gradient problem, among others. The ResNet im-
plemented in this homework is a miniaturized version since
the full version is unnecessarily large for the small CIFAR-
10 images that are sized 32x32 instead of the much larger
ImageNet database. This implementation uses 2 conv block
units with 2 sets of filters in each. The network is trained
with a batch size of 128 from 64 images with 1 random
flip applied to each to get 128 total batch size. The sipmle,
common SGD (Stochastic Gradient Descent) optimizer is used
with a learning rate of 0.01 and momentum of 0.9. This
learning rate was found to work best after trying 0.1 and

0.001 options. The ResNet architecture is shown in Fig. 43
with 13,386 parameters. Training accuracy reached 51.9% and
test accuracy was 46.8%. Training accuracy and loss plots are
shown in Fig. 45.

Fig. 43. Resnet Network Architecture

Fig. 44. Resnet Confusion Matrix for Train and Test

Fig. 45. Resnet training accuracy and loss over epochs

C. Network 3: ResNext

ResNext builds on the original ResNet by modifing the
conv block units to have several branches of mini conv layers
inside to collect additional features. The branches are summed
and then passed to the next conv block unit to be split
and re-joined again. In this homework implementation, it is
again a smaller version of the originaal due to the CIFAR-
10 application. This network has 2 conv block units of 2
mini branches (”cardinality” = 2) in each. The network is
trained with a batch size of 128 from 64 images with 1
random flip applied to each to get 128 total batch size. The
sipmle, common SGD (Stochastic Gradient Descent) optimizer
is used with a learning rate of 0.01 and momentum of 0.9. This
learning rate was found to work best after trying 0.1 and 0.001



options. The ResNext architecture is shown in Fig. 46 with
6,301,578 parameters. Training accuracy reached 98.63% and
test accuracy was 73.91%. Training accuracy and loss plots
are shown in Fig. 48.

Fig. 46. ResNext Network Architecture

Fig. 47. ResNext Confusion Matrix for Train and Test

Fig. 48. ResNext training accuracy and loss over epochs

D. Network 4: DenseNet

DenseNet also builds on ideas from ResNet with residual
connections. Dense blocks are structured with several convo-
lution layers inside with residual connections running from
every layer to every future layer. The network implemented
in this homework is again a reduced size for this application,

with 2 dense blocks with 3 convolution sections (of 2 Conv
layers) in each. The network is trained with a batch size of
128 from 64 images with 1 random flip applied to each to get
128 total batch size. The sipmle, common SGD (Stochastic
Gradient Descent) optimizer is used with a learning rate of
0.01 and momentum of 0.9. This learning rate was found to
work best after trying 0.1 and 0.001 options. The DenseNet
architecture is shown in Fig. 49 with 2,516,362 parameters.
Training accuracy reached 96.8% and test accuracy was 76%.
Training accuracy and loss plots are shown in Fig. 51.

Fig. 49. DenseNet Network Architecture

Fig. 50. DenseNet Confusion Matrix for Train and Test

Fig. 51. DenseNet training accuracy and loss over epochs



E. Conclusion and Comparison

Overall, the DenseNet performed the best on the CIFAR-10
dataset with 76% on the test set vs ResNext in 2nd place
at 73.9%, despite DenseNet having only around 30% the
number of parameters as ResNext. It is noticed that the Resnet
architecture has an especially small number of parameters in
comparison to the others. This is due to it’s reduced scale being
reduced a bit too much, and it would likely perform more
similar to ResNext if it had a larger number of parameters
from more blocks of layers.

III. CONCLUSION

Overall, this homework was a nice intro to the computer vi-
sion class, with both classic CV and deep learning. The classic-
CV implemented basic filtering methods to create an improved
edge detector modeled after (and greatly simplified from) the
Berkeley PB boundary detector [1]. The deep learning section
was more advanced to learn about three popular architectures
and implement an adaptation of all three to perform on the
CIFAR-10 dataset instead of ImageNet.

REFERENCES

[1] P. Arbeláez, M. Maire, C. Fowlkes and J. Malik, ”Contour Detection
and Hierarchical Image Segmentation,” in IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 5, pp. 898-916, May
2011.

[2] https://www.l3harrisgeospatial.com/docs/laplacianfilters.html
[3] https://en.wikipedia.org/wiki/Gaborf ilter


