RBE549: Homework 0 - Alohomora

Chinmay Sunil Kate Robotics Engineering Department Worcester Polytechnic Institute cskate[at]wpi.edu

I. PHASE I

In Phase 1. Boundary detection algorithm is implemented. A simple method to detect boundary is to look for intensity discontinuity in an image called edges. Probability of boundary lite (pb_lite) algorithm is been implemented along with the Canny and Sobel baselines. pb_lite considers texture and color discontinuity along with intensity discontinuity. It mostly suppress False positives that the classical method produces. Figure 1 descibes about the entire pipeline of the pb_lite architecture. This method contains following subsections:

Fig 1: Overview of the pb lite pipeline.

Fig. 1: Overview of pb_lite pipeline

A. Filter Bank Generation

There are 3 types of filters that are used in this algorithm: Oriented derivative of Gaussian (DoG) filter, Leung-Malik filter, and Gabor filter. Illustration of these filters are presented in figure 1, 2, 3. Oriented DoG filter is convolved with Sobel filters and Sobel Kernel and the result is rotated. LM filters uses first and second order Gaussian derivatives, Gaussians and Laplacian of Gaussians. Gabor filter uses Gaussian kernel filter modulated by sinusoidal plane wave.

Fig. 2: Oriented derivative of Gaussian filter, generated with $\sigma = 1$; 3; 5; 7.

.

Fig. 3: Large Leung-Malik filter.

B. Texton, Brightness, Color Map Generation

Input image is filtered with filter banks. Responses of filtered image is clustered with KMeans function and is then vectorized to get Texton, Brightness and color map. Texton, brightness, and color map of all provided images are illustrated from figure 4 to figure 13.

Fig. 5: \mathcal{T} , \mathcal{B} , \mathcal{C} of image 2

C. Texton, Brightness, Color Gradient Generation

Gradients for each map are computed using difference of values across different shape and sizes using Half-disc masks. In order to compute the texture, brightness, and color gradient map, we have to use the idea of half-disc masks. This map helps to compute Chi-square distance on gradient maps which

Fig. 6: \mathcal{T} , \mathcal{B} , \mathcal{C} of image 3

Fig. 7: \mathcal{T} , \mathcal{B} , \mathcal{C} of image 4

Fig. 8: \mathcal{T} , \mathcal{B} , \mathcal{C} of image 5

Fig. 9: \mathcal{T} , \mathcal{B} , \mathcal{C} of image 6

Fig. 10: \mathcal{T} , \mathcal{B} , \mathcal{C} of image 7

Fig. 11: \mathcal{T} , \mathcal{B} , \mathcal{C} of image 8

Fig. 12: \mathcal{T} , \mathcal{B} , \mathcal{C} of image 9

is better solution than looping over each pixels. These masks are displayed in figure 14.

These gradient maps \mathcal{T}_g , \mathcal{B}_g and \mathcal{C}_g of all provided images are displayed from figure 15 to figure 24.

Fig. 13: \mathcal{T} , \mathcal{B} , \mathcal{C} of image 10

Fig. 14: \mathcal{T} , \mathcal{B} , \mathcal{C} of image 10

Fig. 15: Half-disc masks generated with radius 1, 3, 5, 7.

Fig. 16: \mathcal{T}_g , \mathcal{B}_g , \mathcal{C}_g of image 1

Fig. 17: \mathcal{T}_g , \mathcal{B}_g , \mathcal{C}_g of image 2

Fig. 18: \mathcal{T}_g , \mathcal{B}_g , \mathcal{C}_g of image 3

Fig. 19: \mathcal{T}_g , \mathcal{B}_g , \mathcal{C}_g of image 4

D. Boundary Detection

The Mean of gradient maps are calculated and aggregated dynamically with the Sobel and Canny baseline methods. The results of all 10 provided images are illustrated from figure 25 to 34.

Fig. 20: \mathcal{T}_g , \mathcal{B}_g , \mathcal{C}_g of image 5

Fig. 21: \mathcal{T}_g , \mathcal{B}_g , \mathcal{C}_g of image 6

Fig. 22: \mathcal{T}_g , \mathcal{B}_g , \mathcal{C}_g of image 7

Fig. 23: \mathcal{T}_g , \mathcal{B}_g , \mathcal{C}_g of image 8

Fig. 24: \mathcal{T}_g , \mathcal{B}_g , \mathcal{C}_g of image 9

Fig. 25: \mathcal{T}_g , \mathcal{B}_g , \mathcal{C}_g of image 10

Fig. 26: Sobel, Canny, and pb-lite result of image 1

Fig. 27: Sobel, Canny, and pb-lite result of image 2

E. Result Analysis

From the output we can seen that Canny method has many False positive and the detection is very sharp. In Sobel method

Fig. 28: Sobel, Canny, and pb-lite result of image 3

Fig. 29: Sobel, Canny, and pb-lite result of image 4

Fig. 30: Sobel, Canny, and pb-lite result of image 5

Fig. 31: Sobel, Canny, and pb-lite result of image 6

Fig. 32: Sobel, Canny, and pb-lite result of image 7

Fig. 33: Sobel, Canny, and pb-lite result of image 8

Fig. 34: Sobel, Canny, and pb-lite result of image 9

we see the boundary detection is too suppressed. We take dynamic weights of the world(Canny and Sobel methods) and aggregate with the results of pb_lite outputs. This gives really impressive reasults as we see in the figure.

Fig. 35: Sobel, Canny, and pb-lite result of image 10

II. PHASE II

A. Introduction

In Phase 2. Multiple Neural Architecture needs to be implemented on CIFAR10 dataset. CiFAR10 Dataset has 10 classes and has images of 50,000 with the size of 32X32. Needs to implement custom models, Resnet, ResNext, Densenet architectures. with various augmentation and standardization techniques.

B. First Neural Network

CNN on CIFAR10 dataset with custom model has very basic architecture with 2 convolution layers, 2 pooling, RELU as activation function and 3 fully connected layers. Hyperparameters are as follows 50 Epochs, 100 Mini-Batch, learning_rate = 0.01. Got Accuracy 67% on Train Dataset and 68.5% on Test Dataset. Total Number of Parameters in Basic model is 62006.

[3453	107	188	101	110	45	81	89	555	271]	(0)
[153	3615	34	59	20	31	80	49	280	679]	(1)
[456	29	2521	365	462	266	528	208	88	77]	(2)
[143	34	246	2533	279	725	634	210	99	97]	(3)
[156	16	289	306	2911	148	462	574	67	71]	(4)
[61	21	222	1209	224	2507	302	345	46	63]	(5)
[45	32	185	280	166	91	4076	43	39	43]	(6)
[78	15	151	284	279	247	121	3683	31	111]	(7)
[296	116	52	84	24	28	37	16	4149	198]	(8)
[166	261	33	69	29	29	76	96	189	4052]	(9)
(0)	(1) (2	2) (3)) (4)	(5)	(6) (7	7) (8)	(9)			

Fig. 36: Confusion Matrix for First Neural Network Training Set (Accuracy: 67.21%)

_					_		_		_		
[]	776	19	29	15	14	10	8	14	72	43]	(0)
I	28	767		10	4		14		34	127]	(1)
[92	4	501	69	81	72	112	39	12	18]	(2)
[35	8	43	483	67	168	104	51	19	22]	(3)
I	26	2	64	69	587	38	82	108	17	7]	(4)
I	21	0	39	216	33	562	54	57		12]	(5)
I	14	4	31	51	24	27	829	12		3]	(6)
E	16		39	55	41	75	21	724	4	22]	(7)
I	82	24	8	16			10		798	45]	(8)
[28	52		17	2			18	37	823]	(9)
	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	

Fig. 37: Confusion Matrix for First Neural Network Testing Set (Accuracy: 68.5%)

C. Improved Neural Network

Modified_Network has many changes into the architecture as well as into the augmentation of Dataset. In Architecture

Fig. 38: Accuracy vs No. of Epochs for First Neural Network on Training/Testing Set

Fig. 39: Loss vs No. of Epochs for First Neural Network on Training/Testing Set

BatchNorm Layers are been added and Network is more Deep. In Augmentation techniques Horizontalflip, Padding, RandomCrop, Normalization of data is done. Hyperparameters are as follows 50 Epochs, 100 Mini-Batch, learning_rate = 0.01. Got Accuracy 92% on Train Dataset and 83.52% on Test Dataset. There was some overfitting with this architecture at the given epochs as We get the accuracy but loss didn't reduced much. Total Number of Parameters in Modified model is 5852234.

Ľ	4176	36	239	13	46	8	25		307	144]	(0)
E	16	4678	11	4	4		12	2	110	158]	(1)
I	113		4525	33	116	22	131		30	17]	(2)
I	63	10	450	3324	270	371	336	62	71	43]	(3)
Γ	24	0	186	38	4574	22	109	19	20	8]	(4)
I	23	2	313	439	230	3730	152	74	18	19]	(5)
I	15	- 4	168	28	49	8	4697		20	8]	(6)
Ľ	27		207	57	403	106	26	4120	24	27]	(7)
I	54	17	31		14		4	0	4847	27]	(8)
Ι	18	77	15		10	2	11	4	81	4775]	(9)
1	(0)	(1) (2	2) (3) (4)	(5)	(6) (1	7) (8)) (9)			

Fig. 40: Confusion Matrix for Improved Neural Network Training Set (Accuracy: 92.452%)

[801	10	65	5	10	1	4	1	71	32]	(0)
Γ	2	927	1	1	1	0		0	21	45]	(1)
I	29	0	863		39		31			8]	(2)
I	19		126	612	56	61	67	14	22	18]	(3)
I			57	11	872		36			1]	(4)
I	8		103	105	60	672	22	15		8]	(5)
Ε			56	8	16		899			0]	(6)
Ι	10		72	16	81	29		771		11]	(7)
Ι	27			0	1	0		0	948	11]	(8)
]		27		1	1	0	1	0	33	926]	(9)
	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	

Fig. 41: Confusion Matrix for Improved Neural Network Testing Set (Accuracy: 83.52%)

Fig. 42: Accuracy vs No. of Epochs for Improved Neural Network on Training/Testing Set

Fig. 43: Loss vs No. of Epochs for Improved Neural Network on Training/Testing Set

D. ResNet

ResNet is a famous NN architecture which uses Residual Layers as skip connections, This network has definitely improved accuracy with respect to loss. It uses 3 layers of 16,32,64 Residual blocks. In Augmentation techniques Horizontalflip, Padding, RandomCrop, Normalization of data is done. Hyperparameters are as follows 50 Epochs, 100 Mini-Batch, learning_rate = 0.01. Got Accuracy 86.8% on Train Dataset and 82.91% on Test Dataset. Total number of Parameters in Resnet Model is 1957384.

4176	36	239	13	46	8	25		307	144]	(0)
16	4678	11	4	4		12	2	110	158]	(1)
113		4525	33	116	22	131	7	30	17]	(2)
63	10	450	3324	270	371	336	62	71	43]	(3)
24	0	186	38	4574	22	109	19	20	8]	(4)
23	2	313	439	230	3730	152	74	18	19]	(5)
15	4	168	28	49	8	4697		20	8]	(6)
27		207	57	403	106	26	4120	24	27]	(7)
54	17	31		14		4	0	4847	27]	(8)
18	77	15		10		11	4	81	4775]	(9)
(0)	(1) (2	2) (3)) (4)	(5)	(6) (3	7) (8)) (9)			
	4176 16 113 63 24 23 15 27 54 18 (0)	4176 36 16 4678 113 6 63 10 24 0 23 2 15 4 27 3 54 17 18 77 (0) (1) (2	4176 36 239 16 4678 11 113 6 4525 63 10 450 24 0 186 23 2 313 15 4 168 27 3 207 54 17 31 18 77 15 18 77 15				4176 36 239 13 46 8 25 16 4678 11 4 4 5 12 113 6 4525 33 116 22 131 63 10 450 3324 270 371 336 24 0 186 38 4574 22 109 23 2 313 439 230 3730 152 15 4 168 28 49 8 4697 27 3 207 57 403 106 26 54 17 31 3 14 3 4 18 77 15 7 100 2 11 (0) (1) (2) (3) (4) (5) (6) (7) (8)			4176 36 239 13 46 8 25 6 307 $144]$ 16 4678 11 4 4 5 12 2 110 $158]$ 113 6 4525 33 116 22 131 7 30 $17]$ 63 10 450 3324 270 371 336 62 71 431 24 0 186 38 4574 22 109 19 20 $8]$ 23 2 313 439 230 3730 152 74 18 $19]$ 15 4 168 28 49 8 4697 3 20 $8]$ 27 3 207 57 493 106 26 4120 242 $27]$ 54 17 31 3 4 0 4847 $27]$ 54 17 15

Fig. 44: Confusion Matrix for ResNet Training Set (Accuracy: 86.8%)

801	10	65		10	1	4	1	71	32]	(0)			
2	927	1	1	1	0		0	21	45]	(1)			
29	0	863		39		31			8]	(2)			
19		126	612	56	61	67	14	22	18]	(3)			
	1	57	11	872		36			1]	(4)			
8	2	103	105	60	672	22	15		8]	(5)			
		56	8	16		899			0]	(6)			
10		72	16	81	29		771		11]	(7)			
27 3 7 0 1 0 3 0 948 11] (8)													
	27		1	1	0	1	0	33	926]	(9)			
(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)													
ccu	racy	: 82	.91 9	ĸ									

Fig. 45: Confusion Matrix for ResNet Testing Set (Accuracy: 82.91%)

Fig. 46: Accuracy vs No. of Epochs for ResNet on Training/Testing Set

Fig. 47: Loss vs No. of Epochs for ResNet on Training/Testing Set

E. ResNeXt

ResNext architecture on CIFAR10 dataset has ResNext layers where connections are splitted among the blocks and skip connection is used. This architecture has 4 ResNext layers with ResNext blocks and cardinality =2 and Bottleneck width of 64. Used weight_decay on SGD optimizer. In Augmentation techniques Horizontalflip, Padding, RandomCrop, Normalization of data is done. Hyperparameters are as follows 50 Epochs, 100 Mini-Batch, learning_rate = 0.01. Got Accuracy 95.8% on Train Dataset and 87.91% on Test Dataset.Total Number of parameters in ResNext is 9128778.

[4929	0	20	10	15	0	1	5	19	1]	(0)
	36	4860	0		1				36	43]	(1)
	62	0	4652	64	65	20	76	53	8	0]	(2)
	18	0	11	4740	65	55	64	38		4]	(3)
		0		20	4926		10	30	0	0]	(4)
		0	14	386	82	4386	29	100	0	0]	(5)
	8	0	2	15	20	1	4942			1]	(6)
		0		28	29	4	1	4928	0	0]	(7)
	37	1	2				1	4	4937	1]	(8)
	51	17		20	2	1	11	23	42	4828]	(9)
	(0) ((1) (2	2) (3)) (4)	(5)	(6) (3	7) (8) (9)			

Fig. 48: Confusion Matrix for ResNeXt Training Set (Accuracy: 95.8%)

[930	1	14	12	8	0	2	2	27	4]	(0)		
[19	907	0		0	0			23	41]	(1)		
[28	0	794	38	45	20	45	22		1]	(2)		
[13	1	19	820	40	49	27	20		2]	(3)		
[0	10	17	928	2	20	17	0	1]	(4)		
[0		142	38	761	10	36	0	0]	(5)		
[0	8	24	13		941			0]	(6)		
[10	0		19	30	8	0	928	0	0]	(7)		
[21	2	2		2	0		1	957	5]	(8)		
[24	15	4		1	0			19	920]	(9)		
	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)			
A	ccur	acv	: 88	.86 2	6								

Fig. 49: Confusion Matrix for ResNeXt Testing Set (Accuracy: 87.91%)

Fig. 50: Accuracy vs No. of Epochs for ResNeXt on Training/Testing Set

F. DenseNet

DenseNet is really Popular architecture used to classify images on CIFAR10 dataset. It has 4 Dense layers with Transition of 6,12,24,16 and Bottleneck layers. It has Growth rate equals to 32. Adam optimizer being used with weight decay

Fig. 51: Loss vs No. of Epochs for ResNeXt on Training/Testing Set

of 0.005. In Augmentation techniques Horizontalflip, Padding, RandomCrop, Normalization of data is done. Hyperparameters are as follows 50 Epochs, 100 Mini-Batch, learning_rate = 0.01. Got Accuracy 95.92% on Train Dataset and 88.51% on Test Dataset. Total Number of Parameters in DenseNet model is 6956298.

E	4949	8	1	12	8	1		0	8	8]	(0)
E		4970	1	4		0	1	0		14]	(1)
E	135		4471	112	149		106		8	2]	(2)
E	8	4		4860	52	26	34	4		3]	(3)
E		0		18	4960	1	8		0	0]	(4)
I	12			502	116	4252	41	50		7]	(5)
E		4		37	24	1	4928	0	0	0]	(6)
I	25		12	60	150		12	4715	4	12]	(7)
I	34		0	4	1	0		0	4939	10]	(8)
I	26	41	0	8		0	2			4916]	(9)
	(0)	(1) (:	2) (3) (4)	(5)	(6) (7) (8) (9)			

Fig. 52: Confusion Matrix for DenseNet Training Set (Accuracy: 95.92%)

	_						_				
[930			11	11	0		1	20	9]	(0)
[973				0	1			17]	(1)
[49		736	62	79		51	4		4]	(2)
[14		11	856	36	26	31	11	4	6]	(3)
[1		12	955		15		0	1]	(4)
[10	173	48	727	13	16	0	5]	(5)
C		2		32	14		936	1	1	2]	(6)
[19	2		35	54			865	1	8]	(7)
Ľ						0	1		934	14]	(8)
C	13	32			0				10	939]	(9)
	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
٩	COUR	acu		51 9	¥.						

Fig. 53: Confusion Matrix for DenseNet Testing Set (Accuracy: 88.51%)

G. Analysis

Here from the results DenseNet truly gives the better accuracy and loss on Test dataset due to Transition layers and growth rate of layers. Followed By ResNext wich had bottleneck and split connections and skip connections. Surprisingly Modified NN got better results but still there was some overfitting on the Train Dataset, so easily Resnet performed well with the residual layers of skip connections. Finally Vanilla did performed well inspite of limitations discussed in the subsection.

Fig. 54: Accuracy vs No. of Epochs for DenseNet on Training/Testing Set

Fig. 55: Loss vs No. of Epochs for DenseNet on Training/Testing Set