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Abstract—This document consist of homework implementation
of pb (probability of boundary) boundary detection algorithm
and Neural Network models for computer vision applications.

I. INTRODUCTION

In this document we have explained the application and
results of two phases. Phase 1 consist of the implementation of
pb (probability of boundary) algorithm which finds boundaries
by examining brightness, color, and texture information across
multiple scales (different sizes of objects/image). In addition
to this it also utilizes the Canny and Sobel baselines to identify
the edge.

In Phase 2, we work on the implementation of multiple
deep learning architectures starting with a CNN network and
then further implementation of architectures such as ResNet,
ResNeXt and DenseNet on CIFAR10 Dataset. A comparative
study of the following architectures are also performed.

II. PHASE 1

In this Phase 1, I will implementing the pb-lite boundary
detection algorithm.The objective of this algorithm is improve
boundary detection by using texture and color gradient infor-
mation along with Sobel and Canny filter baselines.

Fig. 1. Pipeline for the pb-lite algorithm [1]

The method consists of following steps:
1) Filter bank generation (Derivative of Gaussians, Leung-

Malik filters, Gabor filters, Half-Disk filters)
2) Texton, Brightness, Color maps are implementation.

3) Texture Gradient (Tg), Brightness Gradient (Bg), Color
Gradient (Cg) maps are computation

4) Using the above gradient maps along with Sobel and
Canny baseline, the pb-lite algorithm is implemented.

A. Oriented Derivative of Gaussian Filter Bank

Derivative of Gaussian filter is a filter created by considering
the gradient of the Gaussian Kernel filter. Using the Sobel
filter, the Gaussian map is convoluted and the first derivative
of the Gaussian map is calculated as how in Figure 2 and
Figure 3.

Fig. 2. Visualization of 2D Gaussian Kernel

Fig. 3. Visualization of 2D Derivative of Gaussian Kernel using Sobel filter

Further, we create filters with different scales (standard
deviation) and orientations and combine them into a filter
bank. The Figure 4 is the visualization of the Gaussian Filter
Bank.



Fig. 4. Visualization of 2D Derivative of Gaussian Kernel using Sobel filter

B. The Leung-Malik Filter Bank

The Leung-Malik filters consists of first and second order
derivatives of Gaussian filters (DoG), Laplacian of Gaussian
(LoG) filters and Gaussian Filters. We consider two versions
of the LM filter bank. In LM Small and LM Large filter bank
with the scales σ = 1,
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respectively. The First and second derivative of Gaussian use
the first three scales in either case with the following relation
of σy = 3σx. The LoG filers are created using the four basic
scales at σ and 3σ resulting in 8 filters.[1] The formula [ [2]]
for the implementation of Laplace of Gaussian is as follows:
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Lastly, the Gaussian Kernel are developed on the four basic
scales. The Figure 5 is the visualization of the Leung-Malik
filter bank.

Fig. 5. Visualization of Leung-Malik filter bank

C. Gabor Filter Bank

A Gabor filter is a Gaussian kernel function modulated
by a sinusoidal plane wave. The filter bank is created using
5 different scales and 8 different orientations. The Figure 6
shows the Gabor filter bank.

Fig. 6. Visualization of Gabor filter bank

D. Texton, Brightness and Color Map

After the implementation of all the filter banks, three
other maps are created. They are the Texton, Brightness and
Color Maps. The Texton map corresponds to the textures
elements present in the image. The Brightness and Color Maps
evaluated the intensity of the pixels in the image and the
color pattern in the images respectively. Given below Figure
7 represents the original image.

Fig. 7. Original Image used for the pb-lite implementation

The following Figures 8, Figure 9 and Figure 10 represent
the Texton, Brightness and Color Maps respectively.

Fig. 8. Visualization of Texton Map

Fig. 9. Visualization of Brightness Map



Fig. 10. Visualization of Color Map

E. Texton, Brightness and Color Gradient Map

Following the calculation of the Texton, Brightness and
Color maps we start to generate the gradient map for each
one of the above. A gradient map depicts the rate of change
of texture, Brightness and Color between two pixels in the
above maps. The Figures 11 Figure 12 and Figure 13 are
Texton gradient, Brightness gradient and Color gradient maps
respectively.

Fig. 11. Visualization of Texton gradient Map

Fig. 12. Visualization of Brightness gradient Map

Fig. 13. Visualization of Color gradient Map

F. Pb-lite implementation

The pb-lite algorithm implementation, as mentioned before
involves the various filters we have created along with the
use of Sobel and Canny baselines. Figure 14 and Figure
15 represent the Sobel and Canny filter baseline outputs
respectively.

Fig. 14. Visualization of Sobel Baseline

Fig. 15. Visualization of Canny Baseline

After the calculation of all the following outputs, the pl-lite
output is calculated according to the follwing equations[ [1]]:

PbEdges =
τ g + βg + Cg

3
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The following Figure 16 is the output of the pb-lite bound-
ary detection algorithm.

Fig. 16. Visualization of Pb-lite boundary detection algorithm

III. PHASE 2

In the section of the assignment, the implementation of
own CNN network has to be done for image classification of
CIFAR10 data. The CIFAR10 data is a standard dataset con-
sisting of 10 classes or objects, namely, airplane, automobile,
bird, cat, deer, dog, frog, horse, ship and truck. The dataset
was split into two parts: Training and Testing dataset. The
Train data set consisted of 50,000 images and the testing set
consisted of 10,000 images in total.

The CNN network implemented is as follows:

Fig. 17. CNN model architecture for phase 2

A. Results

The following are the results from the basic implementation
of own CNN architecture. The Figure 18 show the Optimizer
parameters for the initial run of the model. Figure 19 shows
the Training Accuracy with iteration and Figure 20 shows
the Training Loss-per-iteration. The Figure 21 shows the
Test accuracy with Iteration and finally, Figure 22 shows the
confusion matrix for the corresponding model.

Fig. 18. Optimizer parameters and Data set description

Fig. 19. Training Accuracy-vs-iteration plot

Fig. 20. Training Loss-vs-iteration plot

Fig. 21. Test Accuracy-vs-iteration plot

Fig. 22. Confusion Matrix and Final model accuracy



The following are the results from the basic implementation
of the tuned CNN architecture. The Figure 23 show the
Optimizer parameters for the final tuned run of the model.
Figure 24 shows the Training Accuracy with iteration and
Figure 25 shows the Training Loss-per-iteration. The Figure
26 shows the Test accuracy with Iteration and finally, Figure
27 shows the confusion matrix for the corresponding model.

Fig. 23. Optimizer parameters and Data set description

Fig. 24. Training Accuracy-vs-iteration plot

Fig. 25. Training Loss-vs-iteration plot

Fig. 26. Test Accuracy-vs-iteration plot

The models performance has increased from 33.03% to
53.35%. The main changes in the model made were Data

Fig. 27. Confusion Matrix and Final model accuracy

Augmentation and reducing the mini-batch size from 500
samples per batch to 100 samples per batch.

REFERENCES

[1] https://rbe549.github.io/spring2022/hw/hw0/
[2] https://academic.mu.edu/phys/matthysd/web226/Lab02.htm
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